All Issue

2021 Vol.51, Issue 3

Review Article

30 September 2021. pp. 89-102
Abstract
References
1

Chang L, Yan Y, Wang L. Coronavirus Disease 2019: Coronaviruses and Blood Safety. Transfus Med Rev 2020;34(2):75-80.

10.1016/j.tmrv.2020.02.00332107119PMC7135848
2

Mahdy MAA, Younis W, Ewaida Z. An Overview of SARS-CoV-2 and Animal Infection. Front Vet Sci 2020;7:596391.

10.3389/fvets.2020.59639133363234PMC7759518
3

Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020;5(4):536-44.

10.1038/s41564-020-0695-z32123347PMC7095448
4

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579(7798):270-3.

10.1038/s41586-020-2012-732015507PMC7095418
5

Ji W, Wang W, Zhao X, Zai J, Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol 2020;92(4):433-40.

10.1002/jmv.2568231967321PMC7138088
6

Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019;17(3):181-92.

10.1038/s41579-018-0118-930531947PMC7097006
7

Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol 2020; 41(12):1100-15.

10.1016/j.it.2020.10.00433132005PMC7556779
8

Pujari R, Thommana MV, Ruiz Mercedes B, Serwat A. Therapeutic Options for COVID-19: A Review. Cureus 2020;12(9):e10480.

10.7759/cureus.1048032953365PMC7496561
9

Behrens EM, Koretzky GA. Review: Cytokine Storm Syndrome: Looking Toward the Precision Medicine Era. Arthritis Rheumatol 2017;69(6):1135-43.

10.1002/art.4007128217930
10

Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin 2007;45(2):27-37.

10.1097/AIA.0b013e318034194e17426506PMC2785020
11

Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe 2016;19(2):181-93.

10.1016/j.chom.2016.01.00726867177PMC4752723
12

Davidson S, Maini MK, Wack A. Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J Interferon Cytokine Res 2015;35(4):252-64.

10.1089/jir.2014.022725714109PMC4389918
13

Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol 2013;13(12):875-87.

10.1038/nri354724157572PMC4096436
14

Chi Y, Ge Y, Wu B, Zhang W, Wu T, Wen T, et al. Serum Cytokine and Chemokine Profile in Relation to the Severity of Coronavirus Disease 2019 in China. J Infect Dis 2020;222(5):746-54.

10.1093/infdis/jiaa36332563194PMC7337752
15

Ge Y, Huang M, Yao YM. Biology of Interleukin-17 and Its Pathophysiological Significance in Sepsis. Front Immunol 2020;11:1558.

10.3389/fimmu.2020.0155832849528PMC7399097
16

Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 2014;14(9):585-600.

10.1038/nri370725145755PMC4281037
17

Gaffen SL. Recent advances in the IL-17 cytokine family. Curr Opin Immunol 2011;23(5):613-9.

10.1016/j.coi.2011.07.00621852080PMC3190066
18

Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity 2011;34(2):149-62.

10.1016/j.immuni.2011.02.01221349428
19

Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 2009;9(8):556-67.

10.1038/nri258619575028PMC2821718
20

Orlov M, Wander PL, Morrell ED, Mikacenic C, Wurfel MM. A Case for Targeting Th17 Cells and IL-17A in SARS-CoV-2 Infections. J Immunol 2020;205(4):892-8.

10.4049/jimmunol.200055432651218PMC7486691
21

Amatya N, Garg AV, Gaffen SL. IL-17 Signaling: The Yin and the Yang. Trends Immunol 2017;38(5):310-22.

10.1016/j.it.2017.01.00628254169PMC5411326
22

O'Shea JJ, Murray PJ. Cytokine signaling modules in inflammatory responses. Immunity 2008;28(4):477-87.

10.1016/j.immuni.2008.03.00218400190PMC2782488
23

Tanaka T, Narazaki M, Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 2016;8(8):959-70.

10.2217/imt-2016-002027381687
24

Robins E, Zheng M, Ni Q, Liu S, Liang C, Zhang B, et al. Conversion of effector CD4(+) T cells to a CD8(+) MHC II-recognizing lineage. Cell Mol Immunol 2021;18(1):150-61.

10.1038/s41423-019-0347-532066854
25

Brevi A, Cogrossi LL, Grazia G, Masciovecchio D, Impellizzieri D, Lacanfora L, et al. Much More Than IL-17A: Cytokines of the IL-17 Family Between Microbiota and Cancer. Front Immunol 2020;11:565470.

10.3389/fimmu.2020.56547033244315PMC7683804
26

Casillo GM, Mansour AA, Raucci F, Saviano A, Mascolo N, Iqbal AJ, et al. Could IL-17 represent a new therapeutic target for the treatment and/or management of COVID-19-related respiratory syndrome? Pharmacol Res 2020;156:104791.

10.1016/j.phrs.2020.10479132302707PMC7194796
27

Matsuzaki G, Umemura M. Interleukin-17 family cytokines in protective immunity against infections: role of hematopoietic cell-derived and non-hematopoietic cell-derived interleukin-17s. Microbiol Immunol 2018;62(1):1-13.

10.1111/1348-0421.1256029205464
28

Hu Y, Shen F, Crellin NK, Ouyang W. The IL-17 pathway as a major therapeutic target in autoimmune diseases. Ann N Y Acad Sci 2011;1217:60-76.

10.1111/j.1749-6632.2010.05825.x21155836
29

Schwandner R, Yamaguchi K, Cao Z. Requirement of tumor necrosis factor receptor-associated factor (TRAF)6 in interleukin 17 signal transduction. J Exp Med 2000;191(7):1233-40.

10.1084/jem.191.7.123310748240PMC2193168
30

O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 2015;66:311-28.

10.1146/annurev-med-051113-02453725587654PMC5634336
31

O'Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 2012;36(4):542-50.

10.1016/j.immuni.2012.03.01422520847PMC3499974
32

Li HX, Zhao W, Shi Y, Li YN, Zhang LS, Zhang HQ, et al. Retinoic acid amide inhibits JAK/STAT pathway in lung cancer which leads to apoptosis. Tumour Biol 2015;36(11):8671-8.

10.1007/s13277-015-3534-826044560
33

Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol 2020;80:106210.

10.1016/j.intimp.2020.10621031972425
34

Chen Z, Laurence A, O'Shea JJ. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation. Semin Immunol 2007;19(6):400-8.

10.1016/j.smim.2007.10.01518166487PMC2323678
35

Camporeale A, Poli V. IL-6, IL-17 and STAT3: a holy trinity in auto-immunity? Front Biosci (Landmark Ed) 2012;17:2306-26.

10.2741/405422652781
36

Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014;6(10):a016295.

10.1101/cshperspect.a01629525190079PMC4176007
37

Nishihara M, Ogura H, Ueda N, Tsuruoka M, Kitabayashi C, Tsuji F, et al. IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state. Int Immunol 2007;19(6):695-702.

10.1093/intimm/dxm04517493959
38

Zhou L, Ivanov, II, Spolski R, Min R, Shenderov K, Egawa T, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007;8(9):967-74.

10.1038/ni148817581537
39

Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 2007;282(13):9358-63.

10.1074/jbc.C60032120017277312
40

Harris TJ, Grosso JF, Yen HR, Xin H, Kortylewski M, Albesiano E, et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol 2007;179(7):4313-7.

10.4049/jimmunol.179.7.431317878325
41

Krstic J, Obradovic H, Kukolj T, Mojsilovic S, Okic-Dordevic I, Bugarski D, et al. An Overview of Interleukin-17A and Interleukin-17 Receptor A Structure, Interaction and Signaling. Protein Pept Lett 2015;22(7):570-8.

10.2174/092986652266615052014555425990083
42

Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect 2020;53(3):368-70.

10.1016/j.jmii.2020.03.00532205092PMC7156211
43

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020;8(4):420-2.

10.1016/S2213-2600(20)30076-X
44

Wiche Salinas TR, Zheng B, Routy JP, Ancuta P. Targeting the interleukin-17 pathway to prevent acute respiratory distress syndrome associated with SARS-CoV-2 infection. Respirology 2020;25(8):797-9.

10.1111/resp.1387532557955PMC7323293
45

Mikacenic C, Hansen EE, Radella F, Gharib SA, Stapleton RD, Wurfel MM. Interleukin-17A Is Associated With Alveolar Inflammation and Poor Outcomes in Acute Respiratory Distress Syndrome. Crit Care Med 2016;44(3):496-502.

10.1097/CCM.000000000000140926540401PMC4764422
46

Muir R, Osbourn M, Dubois AV, Doran E, Small DM, Monahan A, et al. Innate Lymphoid Cells Are the Predominant Source of IL-17A during the Early Pathogenesis of Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2016;193(4):407-16.

10.1164/rccm.201410-1782OC26488187
47

Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine 2018;104:8-13.

10.1016/j.cyto.2018.01.02529414327PMC7129230
48

Mangodt TC, Van Herck MA, Nullens S, Ramet J, De Dooy JJ, Jorens PG, et al. The role of Th17 and Treg responses in the pathogenesis of RSV infection. Pediatr Res 2015;78(5):483-91.

10.1038/pr.2015.14326267154
49

De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun 2020;11(1):3434.

10.1038/s41467-020-17292-432632085PMC7338513
50

Peng R, Wu LA, Wang Q, Qi J, Gao GF. Cell entry by SARS-CoV-2. Trends Biochem Sci 2021.

10.1016/j.tibs.2021.06.00134187722PMC8180548
51

Gonzalez SM, Siddik AB, Su RC. Regulated Intramembrane Proteolysis of ACE2: A Potential Mechanism Contributing to COVID-19 Pathogenesis? Front Immunol 2021;12:612807.

10.3389/fimmu.2021.61280734163462PMC8215698
52

Dubash S, Bridgewood C, McGonagle D, Marzo-Ortega H. The advent of IL-17A blockade in ankylosing spondylitis: secukinumab, ixekizumab and beyond. Expert Rev Clin Immunol 2019;15(2):123-34.

10.1080/1744666X.2019.156128130576610
53

Song J, Zeng M, Wang H, Qin C, Hou HY, Sun ZY, et al. Distinct effects of asthma and COPD comorbidity on disease expression and outcome in patients with COVID-19. Allergy 2021;76(2):483-96.

10.1111/all.1451732716553
54

Han K, Blair RV, Iwanaga N, Liu F, Russell-Lodrigue KE, Qin Z, et al. Lung Expression of Human Angiotensin- Converting Enzyme 2 Sensitizes the Mouse to SARS-CoV-2 Infection. Am J Respir Cell Mol Biol 2021;64(1):79-88.

10.1165/rcmb.2020-0354OC32991819PMC7781002
55

Sodhi CP, Nguyen J, Yamaguchi Y, Werts AD, Lu P, Ladd MR, et al. A Dynamic Variation of Pulmonary ACE2 Is Required to Modulate Neutrophilic Inflammation in Response to Pseudomonas aeruginosa Lung Infection in Mice. J Immunol 2019;203(11):3000-12.

10.4049/jimmunol.190057931645418PMC7458157
56

Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol 2020;251(3):228-48.

10.1002/path.547132418199PMC7276767
57

Thakur B, Dubey P, Benitez J, Torres JP, Reddy S, Shokar N, et al. A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID-19. Sci Rep 2021;11(1):8562.

10.1038/s41598-021-88130-w33879826PMC8058064
58

Saeed S, Tadic M, Larsen TH, Grassi G, Mancia G. Coronavirus disease 2019 and cardiovascular complications: focused clinical review. J Hypertens 2021;39(7):1282-92.

10.1097/HJH.000000000000281933687179
59

Gu SX, Tyagi T, Jain K, Gu VW, Lee SH, Hwa JM, et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol 2021;18(3):194-209.

10.1038/s41569-020-00469-133214651PMC7675396
60

Carethers JM. Insights into disparities observed with COVID-19. J Intern Med 2021;289(4):463-73.

10.1111/joim.1319933164230
61

Figliozzi S, Masci PG, Ahmadi N, Tondi L, Koutli E, Aimo A, et al. Predictors of adverse prognosis in COVID-19: A systematic review and meta-analysis. Eur J Clin Invest 2020;50(10):e13362.

10.1111/eci.1336232726868
62

Darif D, Hammi I, Kihel A, El Idrissi Saik I, Guessous F, Akarid K. The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong? Microb Pathog 2021;153:104799.

10.1016/j.micpath.2021.10479933609650PMC7889464
63

Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020;584(7821):430-6.

10.1038/s41586-020-2521-432640463PMC7611074
64

Lee JS, Lee WW, Kim SH, Kang Y, Lee N, Shin MS, et al. Age-associated alteration in naive and memory Th17 cell response in humans. Clin Immunol 2011;140(1):84-91.

10.1016/j.clim.2011.03.01821489886PMC3115516
65

Li Q, Ding S, Wang YM, Xu X, Shen Z, Fu R, et al. Age-associated alteration in Th17 cell response is related to endothelial cell senescence and atherosclerotic cerebral infarction. Am J Transl Res 2017;9(11):5160-8.

66

Ouyang X, Yang Z, Zhang R, Arnaboldi P, Lu G, Li Q, et al. Potentiation of Th17 cytokines in aging process contributes to the development of colitis. Cell Immunol 2011;266(2):208-17.

10.1016/j.cellimm.2010.10.00721074754PMC3006034
67

Schmitt V, Rink L, Uciechowski P. The Th17/Treg balance is disturbed during aging. Exp Gerontol 2013;48(12):1379-86.

10.1016/j.exger.2013.09.00324055797
68

Amraei R, Rahimi N. COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells 2020;9(7):1652.

10.3390/cells907165232660065PMC7407648
69

Babapoor-Farrokhran S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci 2020;253:117723.

10.1016/j.lfs.2020.11772332360126PMC7194533
70

Long B, Brady WJ, Koyfman A, Gottlieb M. Cardiovascular complications in COVID-19. Am J Emerg Med 2020;38(7):1504-7.

10.1016/j.ajem.2020.04.04832317203PMC7165109
71

Akhmerov A, Marban E. COVID-19 and the Heart. Circ Res 2020;126(10):1443-55.

10.1161/CIRCRESAHA.120.31705532252591
72

Clerkin KJ, Fried JA, Raikhelkar J, Sayer G, Griffin JM, Masoumi A, et al. COVID-19 and Cardiovascular Disease. Circulation 2020;141(20):1648-55.

10.1161/CIRCULATIONAHA.120.04694132200663
73

Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol 2021;17(1):46-64.

10.1038/s41581-020-00357-433077917PMC7570423
74

Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 2010;55(2):500-7.

10.1161/HYPERTENSIONAHA.109.14509420038749PMC2819301
75

Du YN, Tang XF, Xu L, Chen WD, Gao PJ, Han WQ. SGK1-FoxO1 Signaling Pathway Mediates Th17/Treg Imbalance and Target Organ Inflammation in Angiotensin II-Induced Hypertension. Front Physiol 2018;9:1581.

10.3389/fphys.2018.0158130524295PMC6262360
76

Ji Q, Cheng G, Ma N, Huang Y, Lin Y, Zhou Q, et al. Circulating Th1, Th2, and Th17 Levels in Hypertensive Patients. Dis Markers 2017;2017:7146290.

10.1155/2017/714629028757677PMC5516715
77

Calcaterra V, Croce S, Vinci F, De Silvestri A, Cordaro E, Regalbuto C, et al. Th17 and Treg Balance in Children With Obesity and Metabolically Altered Status. Front Pediatr 2020;8:591012.

10.3389/fped.2020.59101233330284PMC7710792
78

Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D, et al. Obesity predisposes to Th17 bias. Eur J Immunol 2009;39(9):2629-35.

10.1002/eji.20083889319662632
79

Endo Y, Yokote K, Nakayama T. The obesity-related pathology and Th17 cells. Cell Mol Life Sci 2017;74(7):1231-45.

10.1007/s00018-016-2399-327757507
80

Sumarac-Dumanovic M, Stevanovic D, Ljubic A, Jorga J, Simic M, Stamenkovic-Pejkovic D, et al. Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. Int J Obes (Lond) 2009;33(1):151-6.

10.1038/ijo.2008.21618982006
81

Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A, et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity (Silver Spring) 2020;28(7):1195-9.

10.1002/oby.2283132271993PMC7262326
82

Panduro M, Benoist C, Mathis D. Tissue Tregs. Annu Rev Immunol 2016;34:609-33.

10.1146/annurev-immunol-032712-09594827168246PMC4942112
83

Endo Y, Asou HK, Matsugae N, Hirahara K, Shinoda K, Tumes DJ, et al. Obesity Drives Th17 Cell Differentiation by Inducing the Lipid Metabolic Kinase, ACC1. Cell Rep 2015;12(6):1042-55.

10.1016/j.celrep.2015.07.01426235623
84

Vargas-Vazquez A, Bello-Chavolla OY, Ortiz-Brizuela E, Campos-Munoz A, Mehta R, Villanueva-Reza M, et al. Impact of undiagnosed type 2 diabetes and pre-diabetes on severity and mortality for SARS-CoV-2 infection. BMJ Open Diabetes Res Care 2021;9(1):e002026.

10.1136/bmjdrc-2020-00202633593750PMC7887863
85

Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J 2020;55(5).

10.1183/13993003.01227-202032341104PMC7236831
86

Jafar N, Edriss H, Nugent K. The Effect of Short-Term Hyperglycemia on the Innate Immune System. Am J Med Sci 2016;351(2):201-11.

10.1016/j.amjms.2015.11.01126897277
87

Pal R, Bhadada SK. COVID-19 and diabetes mellitus: An unholy interaction of two pandemics. Diabetes Metab Syndr 2020;14(4):513-7.

10.1016/j.dsx.2020.04.04932388331PMC7202837
88

Abdel-Moneim A, Bakery HH, Allam G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother 2018;101:287-92.

10.1016/j.biopha.2018.02.10329499402
89

Ryba-Stanislawowska M, Skrzypkowska M, Mysliwiec M, Mysliwska J. Loss of the balance between CD4(+)Foxp3(+) regulatory T cells and CD4(+)IL17A(+) Th17 cells in patients with type 1 diabetes. Hum Immunol 2013;74(6):701-7.

10.1016/j.humimm.2013.01.02423395729
90

Zhang C, Xiao C, Wang P, Xu W, Zhang A, Li Q, et al. The alteration of Th1/Th2/Th17/Treg paradigm in patients with type 2 diabetes mellitus: Relationship with diabetic nephropathy. Hum Immunol 2014;75(4):289-96.

10.1016/j.humimm.2014.02.00724530745
91

Balasubramanyam M, Aravind S, Gokulakrishnan K, Prabu P, Sathishkumar C, Ranjani H, et al. Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol Cell Biochem 2011;351(1-2):197-205.

10.1007/s11010-011-0727-321249428
92

Baldeon RL, Weigelt K, de Wit H, Ozcan B, van Oudenaren A, Sempertegui F, et al. Decreased serum level of miR-146a as sign of chronic inflammation in type 2 diabetic patients. PLoS One 2014;9(12):e115209.

10.1371/journal.pone.011520925500583PMC4264887
=93

Abate BB, Kassie AM, Kassaw MW, Aragie TG, Masresha SA. Sex difference in coronavirus disease (COVID-19): a systematic review and meta-analysis. BMJ Open 2020;10(10):e040129.

10.1136/bmjopen-2020-04012933028563PMC7539579
94

Chu S, Sun R, Gu X, Chen L, Liu M, Guo H, et al. Inhibition of Sphingosine-1-Phosphate-Induced Th17 Cells Ameliorates Alcohol-Associated Steatohepatitis in Mice. Hepatology 2021;73(3):952-67.

10.1002/hep.3132132418220
95

Baskara I, Kerbrat S, Dagouassat M, Nguyen HQ, Guillot-Delost M, Surenaud M, et al. Cigarette smoking induces human CCR6(+)Th17 lymphocytes senescence and VEGF-A secretion. Sci Rep 2020;10(1):6488.

10.1038/s41598-020-63613-432300208PMC7162978
96

Haitao T, Vermunt JV, Abeykoon J, Ghamrawi R, Gunaratne M, Jayachandran M, et al. COVID-19 and Sex Differences: Mechanisms and Biomarkers. Mayo Clin Proc 2020;95(10):2189-203.

10.1016/j.mayocp.2020.07.02433012349PMC7402208
97

Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020;588(7837):315-20.

10.1038/s41586-020-2700-332846427PMC7725931
98

Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol 2020;146(1):110-8.

10.1016/j.jaci.2020.04.00632294485PMC7152876
99

Lee JH, Ulrich B, Cho J, Park J, Kim CH. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. J Immunol 2011;187(4):1778-87.

10.4049/jimmunol.100391921768398PMC3155957
100

Chen RY, Fan YM, Zhang Q, Liu S, Li Q, Ke GL, et al. Estradiol inhibits Th17 cell differentiation through inhibition of RORgammaT transcription by recruiting the ERalpha/REA complex to estrogen response elements of the RORgammaT promoter. J Immunol 2015;194(8):4019-28.

10.4049/jimmunol.140080625769926PMC4390502
101

Tyagi AM, Srivastava K, Mansoori MN, Trivedi R, Chattopadhyay N, Singh D. Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS One 2012;7(9):e44552.

10.1371/journal.pone.004455222970248PMC3438183
102

Relloso M, Aragoneses-Fenoll L, Lasarte S, Bourgeois C, Romera G, Kuchler K, et al. Estradiol impairs the Th17 immune response against Candida albicans. J Leukoc Biol 2012;91(1):159-65.

10.1189/jlb.111064521965175
103

Li Z, Yue Y, Xiong S. Distinct Th17 inductions contribute to the gender bias in CVB3-induced myocarditis. Cardiovasc Pathol 2013;22(5):373-82.

10.1016/j.carpath.2013.02.00423523188
104

AbdulHussain G, Azizieh F, Makhseed M, Raghupathy R. Effects of Progesterone, Dydrogesterone and Estrogen on the Production of Th1/Th2/Th17 Cytokines by Lymphocytes from Women with Recurrent Spontaneous Miscarriage. J Reprod Immunol 2020;140:103132.

10.1016/j.jri.2020.10313232380371
105

Mauvais-Jarvis F, Klein SL, Levin ER. Estradiol, Progesterone, Immunomodulation, and COVID-19 Outcomes. Endocrinology 2020;161(9):bqaa127.

10.1210/endocr/bqaa12732730568PMC7438701
106

Cravedi P, Mothi SS, Azzi Y, Haverly M, Farouk SS, Perez-Saez MJ, et al. COVID-19 and kidney transplantation: Results from the TANGO International Transplant Consortium. Am J Transplant 2020;20(11):3140-8.

10.1111/ajt.1618532649791PMC7405285
107

Banerjee D, Popoola J, Shah S, Ster IC, Quan V, Phanish M. COVID-19 infection in kidney transplant recipients. Kidney Int 2020;97(6):1076-82.

10.1016/j.kint.2020.03.01832354637PMC7142878
108

Henry BM, Lippi G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int Urol Nephrol 2020;52(6):1193-4.

10.1007/s11255-020-02451-932222883PMC7103107
109

Hansrivijit P, Qian C, Boonpheng B, Thongprayoon C, Vallabhajosyula S, Cheungpasitporn W, et al. Incidence of acute kidney injury and its association with mortality in patients with COVID-19: a meta-analysis. J Investig Med 2020;68(7):1261-70.

10.1136/jim-2020-00140732655013PMC7371487
110

Kunutsor SK, Laukkanen JA. Renal complications in COVID-19: a systematic review and meta-analysis. Ann Med 2020;52(7):345-53.

10.1080/07853890.2020.179064332643418PMC7877945
111

Coto E, Gomez J, Suarez B, Tranche S, Diaz-Corte C, Ortiz A, et al. Association between the IL17RA rs4819554 polymorphism and reduced renal filtration rate in the Spanish RENASTUR cohort. Hum Immunol 2015;76(2-3):75-8.

10.1016/j.humimm.2015.01.02725636567
112

Cortvrindt C, Speeckaert R, Moerman A, Delanghe JR, Speeckaert MM. The role of interleukin-17A in the pathogenesis of kidney diseases. Pathology 2017;49(3):247-58.

10.1016/j.pathol.2017.01.00328291548
113

Chung BH, Kim KW, Sun IO, Choi SR, Park HS, Jeon EJ, et al. Increased interleukin-17 producing effector memory T cells in the end-stage renal disease patients. Immunol Lett 2012;141(2):181-9.

10.1016/j.imlet.2011.10.00222004873
114

Lang CL, Wang MH, Hung KY, Hsu SH, Chiang CK, Lu KC. Correlation of interleukin-17-producing effector memory T cells and CD4+CD25+Foxp3 regulatory T cells with the phosphate levels in chronic hemodialysis patients. Scientific WorldJournal 2014;2014:593170.

10.1155/2014/59317024558316PMC3914580
115

Rafael-Vidal C, Perez N, Altabas I, Garcia S, Pego-Reigosa JM. Blocking IL-17: A Promising Strategy in the Treatment of Systemic Rheumatic Diseases. Int J Mol Sci 2020;21(19):7100.

10.3390/ijms2119710032993066PMC7582977
116

Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol 2017;140(3):645-53.

10.1016/j.jaci.2017.07.00428887948PMC5600287
117

Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, et al. COVID-19: combining antiviral and anti- inflammatory treatments. Lancet Infect Dis 2020;20(4):400-2.

10.1016/S1473-3099(20)30132-8
118

Petrone L, Petruccioli E, Alonzi T, Vanini V, Cuzzi G, Najafi Fard S, et al. In-vitro evaluation of the immunomodulatory effects of Baricitinib: Implication for COVID-19 therapy. J Infect 2021;82(4):58-66.

10.1016/j.jinf.2021.02.02333639176PMC7904476
119

Goker Bagca B, Biray Avci C. The potential of JAK/STAT pathway inhibition by ruxolitinib in the treatment of COVID-19. Cytokine Growth Factor Rev 2020;54:51-62.

10.1016/j.cytogfr.2020.06.01332636055PMC7305753
120

Kale SD, Mehrkens BN, Stegman MM, Kastelberg B, Carnes H, McNeill RJ, et al. "Small" Intestinal Immunopathology Plays a "Big" Role in Lethal Cytokine Release Syndrome, and Its Modulation by Interferon-gamma, IL-17A, and a Janus Kinase Inhibitor. Front Immunol 2020;11:1311.

10.3389/fimmu.2020.0131132676080PMC7333770
Information
  • Publisher :The Korean Society for Microbiology and The Korean Society of Virology
  • Publisher(Ko) :대한미생물학회‧대한바이러스학회
  • Journal Title :JOURNAL OF BACTERIOLOGY AND VIROLOGY
  • Volume : 51
  • No :3
  • Pages :89-102
  • Received Date : 2021-06-21
  • Revised Date : 2021-08-11
  • Accepted Date : 2021-08-18