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Antimicrobial agents have been a crucial discovery in modern medicine and have 

revolutionized the treatment of infectious diseases. However, the rampant overuse

and misuse of these agents have resulted in the emergence of antimicrobial 

resistance (AMR), a global public health crisis that could lead to millions of deaths 

and severe economic losses. The dramatic rise in the occurrence of AMR-related 

deaths marks the beginning of the “post-antibiotic era.” As experts continue to 

work on devising new strategies that circumvent the development of AMR, 

focusing on a deeper understanding of the molecular factors that contribute to 

the persistence and transmission of resistance is the key approach in designing new 

therapeutic targets. This paper explores the various strategies that bacteria employ 

to evade the effects of antibiotics and provides an overview of the challenges in 

treating multidrug-resistant bacteria, including carbapenem-resistant Acinetobacter, 

methicillin-resistant Staphylococcus aureus, extended-spectrum β-lactamase-producing

Enterobacteriaceae, multidrug-resistant (MDR)-Pseudomonas aeruginosa, and MDR-

Mycobacterium tuberculosis. Emerging strategies for addressing antibiotic resistance, 

such as nanomaterials-based antimicrobials and CRISPR-Cas9 technology are also 

elucidated.

Key Words: Antimicrobial resistance, Multidrug resistant bacteria, Antibiotics, 

Nanoparticles

INTRODUCTION

Antimicrobials stand out as one of the most remarkable medical discoveries of 

the 20th century. Their application in the healthcare sector has averted millions of 

premature deaths from infectious diseases (1). Since the advent of the first 

antibiotic in 1910, there has been an estimated average increase of 23 years in 

human life expectancy (2). However, its widespread and indiscriminate use in the 

past decades resulted in the emergence of highly drug-resistant pathogenic 

microorganisms.

Antimicrobial resistance (AMR) is defined as the ability of microorganisms to 

withstand the effects of agents and drugs designed to kill them (3). AMR has the 
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potential to greatly impair the clinical sector, life expectancy, and food production, making it one of the most serious 

global health concerns in modern times. If left unaddressed, the World Health Organization (WHO) estimates that AMR 

could cause 10 million deaths per year by 2050 (4) and a cumulative global economic loss of more than $100 trillion (5). 

The economic costs of AMR are detailed in the review by Pulingam et al. (6). 

The COVID-19 pandemic has exacerbated AMR due to the increased misuse and overuse of antibiotics in healthcare 

settings (7). This surge in antimicrobial use has compromised the efficacy of many frontline antibiotics. Furthermore, 

unchecked secondary bacterial and fungal infections during the pandemic have accelerated AMR development. This poses 

a severe threat to individual treatment outcomes and global public health, with projections indicating that future 

AMR-related deaths could exceed those caused by COVID-19 (8). Additionally, the uncontrolled environmental release of 

antimicrobials and biocides during the pandemic is likely to further accelerate the global growth of AMR (9).

Although AMR is a blanket term used to describe resistance discovered in microorganisms such as viruses, parasites, fungi, 

and bacteria, this review will primarily focus on bacterial antibiotic resistance. AMR can be classified into two types: 

intrinsic resistance and acquired resistance. Some bacterial species are naturally resistant to antibiotics because of certain 

inherited properties, or they simply do not possess the target for the antibiotic compound. In Gram-negative bacteria, for 

example, lipopolysaccharides in their cell walls provide an effective barrier against the penetration of certain antibiotics, 

thus limiting the uptake of drugs (10). In contrast, acquired resistance pertains to initially susceptible bacteria that gained a 

trait or developed a mechanism that enables it to evade the effects of the antibiotics. This type of resistance may emerge 

through spontaneous mutations or via the acquisition of resistance genes. Generally, bacteria acquire these genes through 

transformation (assimilation of resistant genes from the environment), transduction (gene acquisition from bacteriophages), 

and conjugation (transfer of genes from resistant bacterial strains via sex pili) (11). The number of effective antimicrobial 

agents that are available has been severely constrained due to the emergence of resistance in pathogenic bacteria to 

several antimicrobial drugs. Hence, a standardized categorization of those with multiple resistance was established by the 

Centers for Disease Control and Prevention (CDC) and European Centre for Disease Prevention and Control (ECDC) 

relevant to the field of health and epidemiology. Multidrug resistance (MDR) refers to the non-susceptibility of a 

microorganism to one or more antimicrobial agents from at least three different classes. On the other hand, extensive 

extensively drug-resistance (XDR) refers to the non-susceptibility to at least one agent in most classes of antimicrobials (12).

The impact of AMR is heightened by the limited progress in the search for novel antimicrobial medications (13). An 

antibiotic drug is considered novel based on the following criteria: (a) belongs to a novel chemical class and interacts with 

new molecular targets/binding sites, (b) works through new mechanisms, and/or (c) biochemically modified in such a way 

that a previously resistant pathogen is resensitized (14, 15). Currently, the number of active programs searching for novel 

antibiotics is scarce (16). Furthermore, it is widely observed that resistance to an antibiotic often emerges shortly after a 

novel drug has been introduced for clinical use. This was evident with penicillin, as bacterial strains capable of producing 

penicillinase—an extracellular enzyme degrading penicillin—were reported shortly after its introduction as a therapeutic 

agent for bacterial infections. It is important to note that penicillin and its derivatives (cephalosporins and carbapenems) 

are still the predominant class of antibiotics used to treat human and animal bacterial infections to this day (17). 

Bacterial resistance poses a significant challenge due to their alarmingly rapid adaptation. Studies show they can acquire 

resistance to new antibiotics in just a few years (18). This rapid evolution is driven by the widespread use of antimicrobials 

in various sectors, including healthcare and agriculture (19), highlighting the need for proactive measures to combat this 

threat. To mitigate this risk, a multifaceted approach must be taken. Stewardship programs that advocate for judicious 

antibiotic use are essential to minimize selection pressure on bacterial populations (20). Additionally, surveillance programs 

are crucial to monitor emerging resistance trends and inform the development and deployment of future antimicrobials 

(21). While numerous alternative therapies like phage therapy and microbiome modulation offer hope in combating the 

growing threat of antibiotic-resistant bacteria (22), in particular molecular approaches like nanomaterials and clustered 

regularly interspaced short palindromic repeats (CRISPR)-Cas9 hold particular promise due to their unique advantages 
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over traditional antibiotics. These approaches offer two benefits: enhanced efficacy and reduced potential for resistance 

development. Nanomaterials improve drug delivery and cellular uptake, potentially revitalizing the effectiveness of existing 

antibiotics (23). CRISPR-Cas9, with its precise targeting of essential bacterial genes, disrupts critical functions and hinders 

the development of resistance (24). This review provides an update on the recent progress and understanding of the 

genetic and molecular mechanisms of antibiotic resistance. Emerging molecular strategies in addressing antibiotic resistance 

and challenges and advancements in treating MDR pathogens are also discussed. 

ANTIBIOTIC RESISTANCE MECHANISMS

Antibiotics are effective in treating bacterial infections. These agents can alter metabolic and physiological levels, causing 

modifications in cell wall synthesis, protein synthesis inhibition, metabolic pathway inhibition, and DNA interference (25). 

However, factors such as (a) misuse by physicians and patients, (b) inappropriate diagnosis and prescription, and (c) 

overuse contribute to antibiotic resistance in healthcare (26). In addition, incomplete antibiotic use can lead to the 

development of resistant strains, posing a serious public health concern and emphasizing the need for cautious use (27).

Bacterial cells exposed to antimicrobial agents can be either resistant or persister. Non-resistant cells are killed, leaving only 

resistant ones. When regrown, all cells become resistant. Non-persister cells are killed, leaving only persister cells, which are 

susceptible to the antimicrobial agent when regrown. One widely accepted reason for such evasion against antimicrobial 

agents is due to dormancy. In a review of Wood et al. (28), a small fraction of bacterial cells in a population undergoes a 

dormant stage, a metabolically inactive state, found to be linked with the stress response mediated by the toxin-antitoxin 

system, as one mechanism. Resistant cells, often caused by genetic mutations or resistance genes, are less susceptible to 

specific antibiotics due to their mechanisms. Genetic mutations alter antibiotic targets, while horizontal gene transfer 

spreads resistance genes (29). Efflux pumps expel antibiotics, while enzymatic inactivation renders drugs inert (30). 

Resistant cells pose a persistent challenge, necessitating alternative antibiotics or combination therapies to address 

infections caused by these resistant strains. Persister cells, on the other hand, temporarily exhibit antibiotic tolerance, often 

characterized by metabolic dormancy or slowed growth (31). They do not have genetic changes but enter a reversible 

physiological state that shields them from the immediate effects of antibiotics (32). Resistant cells require new 

antimicrobial agents, targeted therapies, and strict infection control measures, while persister cells require extended 

treatment regimens (33). The complex nature of microbial responses to antibiotics underscores the need for more 

innovative strategies to manage infections caused by rapidly evolving antibiotic resistant pathogens.

In the last few years, several antibiotic resistance mechanisms (including enzymatic degradation, target site alteration, 

efflux pumps, reduced permeability, biofilm formation, and genetic mutations) were found to be common across different 

reviews and studies (34-38). One of the many strategies used by bacteria is the synthesis of enzymes, specifically β

-lactamases, which can break down or alter antibiotics such as cephalosporins and penicillin. The effectiveness of these 

medications is neutralized by this enzymatic change, which also plays a major role in the emergence of antibiotic-resistant 

bacteria (39). Additionally, bacteria demonstrate their adaptability by changing the locations of their targets, which lessens 

their vulnerability to the effects of antibiotics. Target site modifications have led to the discovery of multiple genetic 

variants that result in antibiotic resistance in various classes of antibiotics. Fluoroquinolones, for instance, induce mutations 

in the genes encoding bacterial DNA gyrase and topoisomerase, leading to a reduction in their binding affinity. These 

compounds target these enzymes (40).

Bacteria develop a high level resistance to antimicrobial agents by reducing their entrance (41). Efflux pumps, acting as 

molecular exporters, actively remove substances and drugs from bacterial cells, contributing significantly to antibiotic 

resistance. They can give bacteria resistance to a wide range of medications, which helps bacterial infections develop 

MDR (42). Recent studies into the structural and functional characteristics of efflux pumps have shown a variety of pump 

families with particular substrates. Bacteria have the potential to possess multiple efflux pump systems capable of 
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eliminating specific classes of antibiotics. Studies also demonstrate how bacteria can dynamically modify their pump activity 

in reaction to stimuli from their surroundings or the presence of antibiotics (30, 34). Another way that bacteria resist the 

effects of antibiotics is by having less permeability in their cell membranes. Furthermore, resistance is increased by the 

development of biofilms, which are complex colonies of microorganisms encased in an extracellular matrix for protection 

(43). By limiting the diffusion of antimicrobial drugs and consequently blocking their intended targets within bacterial cells, 

the matrix functions as a physical barrier, shielding bacterial cells from immunological and environmental stresses as well as 

inhibiting antibiotic penetration (44, 45).

Genetic mutations can play a role in antibiotic resistance because they can result in changes to vital cellular components 

that drugs target due to spontaneous changes in bacterial DNA (46). These mutations change the nucleotide sequence 

during DNA replication, especially in genes that encode antibiotic target sites (47). Through structural modifications, these 

mutations can impart resistance to target proteins like fluoroquinolones (48). Furthermore, horizontal transfer of resistance 

genes plays a critical role in the rapid spread of antibiotic resistance within bacterial communities and the propagation of 

resistance features across species. This occurs when bacteria conjugate, transform, or transduce resistance features from 

other living things (29). Additionally, mutations can impact the uptake and efflux of antibiotics by altering the permeability 

of cell membranes or strengthening efflux pumps, both of which can lower the concentration of antibiotics inside cells 

(49). Because of this dynamic interplay, the environment of resistance is continuously changing, requiring in-depth 

research to understand mutation patterns, trace evolutionary pathways, and create new defenses against antibiotic- 

resistant bacteria.

Types of Resistance to Antibiotic Agents

Understanding the systems responsible for resistance is vital in the development of antimicrobial drugs that avoid the 

development of resistance and expand available therapeutic options. The majority of pathogenic bacteria are capable of 

becoming resistant to some antimicrobial treatments. Antibiotic resistance can be intrinsic, acquired, or adaptive (34, 50, 51).

Natural resistance can either be intrinsic or induced. Intrinsic resistance, which may be attributed to evolution (50), refers 

to the resistance that a bacterium exhibits as a result of its natural characteristics (52). Intrinsic resistance is universally 

shared within a species, independent of antibiotic exposure. Some bacteria may naturally produce enzymes that break 

down or prevent drugs from binding to target structures causing “insensitivity” (27). Other common mechanisms include 

reduced outer membrane permeability and efflux pumps, while induced resistance involves multidrug-efflux pumps (34). 

Most pathogenic microorganisms can develop resistance to certain drugs, with main mechanisms involving limitation of 

drug uptake, modification of drug targets, inactivation, and active efflux. Understanding these mechanisms could lead to 

improved treatment options and the development of antimicrobial drugs that can withstand resistance attempts by 

microorganisms (27).

Bacteria can acquire resistance to antimicrobial agents through genetic mutations, assimilating DNA from resistant 

bacteria, altering protein production, and transferring resistant DNA through horizontal gene transfer and direct contact 

(50). Helicobacter pylori poses a treatment challenge for gastrointestinal diseases due to its ability to develop antibiotic 

resistance via mutations in its 23S rRNA gene. These mutations hinder antibiotic binding, allowing H. pylori survival and 

potentially compromising treatment success. In staphylococcal species, these mutations reduce susceptibility to linezolid, 

which has led to resistance in Staphylococcus aureus and Streptococcus pneumoniae but remains effective in over 98% of 

Staphylococcus species. Ali et al. (27) presented how mutations may lead to antibiotics being unable to bind to their 

target.

Microbial species that are resistant to antibiotics need to pass on their resistance genes to their offspring (vertical 

transmission) and be able to transmit genes horizontally—that is, through transformation, transduction, and conjugation—
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to preserve their resistance. Transformation involves transferring DNA fragments from a dead bacterium to a recipient 

bacterium, while transduction refers to the transfer between donor and recipient bacterium. Conjugation is another 

process that involves the transfer of genetic material between bacterial cells through physical contact. This process may 

include multiple resistance genes on a single plasmid and is facilitated by mobile genetic elements (52).

Adaptive resistance is a conditional, unstable, and transient microbial resistance caused by a specific signal or environ-

mental condition, which is not vertically inherited and can save costs for genetic modification. One mechanism for adaptive 

resistance is the formation of biofilms, Biofilms are associated with persistent chronic infections and are now a main target 

for developing antimicrobial agents (51). Antimicrobial agents selectively target crucial microbial functions and exhibit 

varying effects. These agents are classified into distinct groups based on their mechanisms of action such as interference 

with cell wall synthesis, membrane depolarization, inhibition of protein synthesis, suppression of nucleic acid synthesis, and 

inhibition of bacterial metabolic pathways (26, 34).

The bacterial cell envelope, which consists of the plasma membrane and cell wall, provides structural integrity and 

protection from internal pressure. The cell wall, an elastic macromolecule, is responsible for maintaining cell shape and 

protecting bacteria from lysis, making it an ideal target for antibiotic therapy. Antibiotics like β-lactams and glycopeptides, 

inhibit cell wall synthesis through two mechanisms. β-lactams target penicillin-binding proteins (PBPs), which are bacterial 

proteins that bind to penicillin and other antibiotics of the β-lactam class (26, 53). Meanwhile, glycopeptides kill 

Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus species by disrupting 

peptidoglycan layers (26, 53). Resistance to β-lactams may arise in two ways: by changing the structures of PBPs to make 

them less attractive to antibiotics, or by generating β-lactamase, an enzyme that breaks down the β-lactam ring and renders 

antibiotics inactive (54). The decline in antibiotic susceptibility observed in S. aureus and the emergence of glycopeptide- 

resistant enterococci, attributed to mutations in transpeptidase enzymes, pose considerable health risks. In 2002, the 

isolation of vancomycin-resistant S. aureus (VRSA) strains occurred following the horizontal transmission of a resistant 

gene from Enterococcus faecalis to MRSA in vivo. Moreover, multiple proteins encoded on mobile transposons are the 

cause of inactivating the vancomycin mechanism (26, 55).

The peptidoglycan outside the cytoplasmic membrane acts as a permeability barrier. Polymyxin antibiotic molecules attract 

negatively charged bacteria, making the cell membrane more permeable, leading to osmotic imbalance and cell death (55). 

Additionally, antibiotics, such as macrolides, aminoglycosides, and tetracycline, can selectively inhibit protein synthesis due 

to structural differences between bacterial and eukaryotic ribosomes. Chloramphenicol can bind to the 50S subunit of the 

bacterial ribosome, preventing new polypeptide addition (34, 56). Resistance to aminoglycosides is carried out through 

ribosomal mutations, ribosomal methyltransferase enzymes, and aminoglycoside-modifying enzymes. Ribosome mutations 

can alter the 16S subunit of the ribosome, potentially leading to lethal effects. Ribosomal methyltransferases in Actino-

mycetes protect ribosomes from aminoglycosides by methylating the 16S subunit. Aminoglycoside-modifying enzymes are 

chemical modifications that result in aminoglycoside resistance, and their function is still uncertain but can be transmitted 

horizontally between bacteria through plasmids, integrons, or transposons (53, 57). Efflux pumps utilize active transport 

mechanisms to eliminate aminoglycosides from bacterial cells, albeit with limited effectiveness attributed to the poly-

cationic structures of aminoglycosides (52-54). AcrAD, a multidrug transporter in gram-negative bacteria, works against 

aminoglycoside antibiotics (26).

Furthermore, three possible enzymatic modifications can lead to erythromycin resistance: (1) ereA or ereB genes in 

erythromycin, (2) mgt gene causing glycosylation in macrolides, and (3) mphA, mphB, and mphC genes causing macrolide 

phosphorylation (34, 57). In Escherichia coli, a sequence mutation alters the II and V domains, leading to erythromycin 

resistance. In S. aureus, methylation of A2058 in domain V can happen through two mechanisms: either by the action of 

the adenine N-methyltransferase enzyme or by a mutation that changes A2058 to guanine. These alterations lead to 

reduced antibiotic affinity (26). Macrolide efflux transporters can be divided into proton motive force pumps and ATP 

pumps, or by their structure to the single and complex integral membrane (57). 
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Fluoroquinolones, which are broad-spectrum antibiotics, cause mutations in DNA topoisomerase genes and inhibit DNA 

gyrase in Gram-negative bacteria, and topoisomerase IV in Gram-positive bacteria, leading to double-stranded DNA 

breakdown and cell death (34, 55). Bacterial resistance to fluoroquinolones is developed through two main mechanisms: 

enzyme alteration and drug-access alteration. Enzyme alteration involves DNA gyrase mutations, such as GyrA or GyrB 

subunits, which can cluster in the Quinolone Resistance Region and reduce drug affinity. Drug-access alteration involves 

MDR efflux pumps, which excrete drugs outside the cell before reaching the target site, reducing fluoroquinolone activity. 

The outer membranes of Gram-negative bacteria also provide more resistance due to reduced protein porins, lowering 

drug diffusion rate (26, 52-54).

Reduced folate co-factors are essential for various cellular components in prokaryotic and eukaryotic cells. Tetrahydrofolate 

is required in biosynthetic processes and degradative reactions. Trimethoprim and sulfonamides target the folate 

biosynthetic pathway, inhibiting para-aminobenzoic acid use in bacterial folate synthesis. These antibiotics are used to treat 

urinary tract infections (UTI), but resistance to these inhibitors has been detected (52). Trimethoprim and sulfonamides 

resistance are common in S. aureus and Streptococcus pneumoniae, resulting from amino acid substitutions in the dhfr 

gene and duplications in the folP gene, respectively, causing chromosomal alteration in the dhfr gene and tertiary structure 

of the enzyme (52). Meanwhile, rifampin resistance is due to a mutation in the rpoB gene, affecting the β-subunit in the 

RNA polymerase. It is common in bacteria like Mycobacterium tuberculosis, where it is the only active antibiotic used. 

Therefore, it is recommended to use it in combination with other antibiotics to prevent resistance (26, 56). 

Antimicrobial-resistant microorganisms are more widespread due to misuse, incorrect dosing, and a lack of novel 

antibiotics. These pathogens can impair cancer chemotherapy, common ailments, surgical procedures, and organ 

transplants. The absence of pertinent data and the creation of new tools and technologies have a big impact on early 

diagnosis and treatment. In order to protect antibiotics for future generations, collective and proactive efforts at several 

social levels are required.

ANTIBIOTIC RESISTANCE IN THE CLINICAL FIELD

Antibiotic resistance has become particularly pronounced in clinical settings, as it poses a significant threat to global 

population health and can lead to reduced treatment options, resulting in higher costs for healthcare systems (58). The 

broader concept which is AMR is alarming as well as it results in close to 1.27 million deaths annually and it is crucial to 

note that this pattern is consistently increasing on a global scale. The six primary pathogens responsible for fatalities 

linked to resistance include E. coli, S. aureus, Klebsiella pneumoniae, S. pneumoniae, Acinetobacter baumannii, and 

Pseudomonas aeruginosa (5).

In the Annual Epidemiological Report in European Antimicrobial Resistance Surveillance Network (EARS-Net) for the period 

2017 to 2021, there were 22 countries that submitted the report with the highest frequency for E. coli (accounting for 

39.4% of all reported cases), succeeded by S. aureus (22.1%), K. pneumoniae (11.9%), E. faecalis (8.8%), Enterococcus 

faecium (6.2%), P. aeruginosa (6.1%), Acinetobacter spp. (3.0%), and S. pneumoniae (2.5%). The current order differs 

from that of 2020, with E. faecium and Acinetobacter spp. now holding one rank higher. The documentation of cases 

involving pathogens displaying AMR aligns with shifts in healthcare and community dynamics brought about by the 

COVID-19 pandemic. These changes are likely to have impacted activities related to infection prevention and control 

targeting these specific pathogens (59). As for the latest surveillance report of 2022, it was observed that in comparison to 

the previous year (2021), the aggregate number of reported isolates exhibited an increase from 366,794 to 392,602. 

Notably, E. coli was the most frequently reported bacterial species in 2022, constituting 39.2% of cases, followed by S. 

aureus (22.1%), K. pneumoniae (12.3%), E. faecalis (8.2%), P. aeruginosa (6.1%), E. faecium (5.9%), S. pneumoniae 

(3.7%), and Acinetobacter spp. (2.5%) (59).

Examining data specific to Southeast Asia, information from Bangladesh, Nepal, and Sri Lanka highlights a notable 
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resistance prevalence to β-lactams, primarily attributed to the presence of pathogens producing extended-spectrum 

beta-lactamase (ESBL) (60-62). In the year 2021, A. baumannii demonstrated a resistance rate of 87.5% to carbapenems. 

Over the period from 2016 to 2021, there was a progressive increase in the rates of MRSA, rising from 28.4% to 42.6%. 

In the context of Indonesia, aligned with the UN Sustainable Development Goals (SDG) indicator, the proportion of 

bloodstream infections induced by ESBL-producing E. coli accounted for 57.7% of the total E. coli cases (63). Among 

children in Myanmar, elevated levels of carbapenem resistance were observed for E. coli (48%), K. pneumoniae (42%), 

and Acinetobacter spp. (59%) (64). In 2016, a study estimated that 43% of deaths (19,122 out of 45,209) in Thailand are 

associated individuals with infections that are hospital-acquired and were attributed to multidrug-resistant bacteria, which 

indicates a surplus of mortality linked to resistant pathogens (65).

In China, a similar investigation was undertaken to monitor AMR within its major hospitals. The quantity of strains collected 

in the year 2022 exhibited an increase compared to the statistics recorded in 2021. The predominant bacterial strains, 

namely E. coli, K. pneumoniae, S. aureus, P. aeruginosa, and A. baumannii, largely maintained their prevalence. The rate at 

which methicillin-resistant strains were detected experienced a continuous decrease. Regarding clinical Enterobacterales 

isolates, the resistance to carbapenems generally remained below 13%, with the exception of Klebsiella spp., where 

resistance ranged from 20.4% to 21.9%. The majority of clinical Enterobacterales isolates demonstrated notable 

susceptibility to tigecycline, colistin, and polymyxin B, with resistance rates ranging from 0.1% to 12.6%. Over the past 

four years, there has been a consistent decline in the detection rates of meropenem-resistant P. aeruginosa and 

meropenem-resistant A. baumannii (66).

The escalating global health threat of bacterial AMR necessitates urgent action. Thus, Murray et al. (5) gave the following 

recommendations. (a) Prioritize building laboratory infrastructure to address the significant and universal burden of AMR. 

(b) Improve management of individual patients and enhance the quality of data in local and global AMR surveillance. (c) 

Strengthen national AMR plans of action to combat AMR effectively on a broader scale. (d) Expand AMR research to 

evaluate indirect effects, including impacts on perioperative prophylaxis, prophylaxis in transplant recipients, transmission 

dynamics, and prevalence of specific variants through genotypic epidemiology. (e) Identify and implement strategies to 

reduce the burden of bacterial AMR, considering both general and context-specific settings, and tailoring interventions to 

available resources and leading pathogen-drug combinations. (f) Recognize the urgent priority of addressing bacterial 

AMR globally, with a focus on sub-Saharan Africa and South Asia, while acknowledging its importance in all regions. In 

the future, a more comprehensive and programmatic approach is essential to enhance the effectiveness of interventions 

against AMR. This approach, as highlighted by Sihombing et al. (67), emphasizes placing people and their needs at the 

core of the AMR response.

CHALLENGES AND ADVANCEMENTS IN TREATING CRITICAL MDR BACTERIA

When a bacterial strain acquires resistance to more than one type of antibiotic, it is called MDR bacterium (68). These 

strains are immune to various structures of antibiotics and to distinct mechanisms of action (68). The MDR arises from 

mutations, selection, and/or acquired resistance through horizontal gene transfer (68, 69). It has been an exigent 

emergency in public health as infections caused by MDR bacteria have killed millions worldwide (5, 21). Such strains of 

MDR bacteria, that are virtually immune to any medical interventions, are called ‘superbugs’ which are proven to be lethal 

and urgent concern (70). A number of critical superbugs are included in this chapter namely, (a) carbapenem-resistant 

Acinetobacter, (b) methillin-resistant S. aureus, (c) ESBL-producing Enterobacteriaceae, (d) MDR-P. aeruginosa, and (e) 

MDR-M. tuberculosis. In addition, challenges in treatment and advances in new classes of antibiotics, nanotechnology, 

phage therapy, and vaccines are tailored to provide present knowledge as well as future directions.
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Carbapenem-resistant Acinetobacter baumannii

The WHO regarded carbapenem-resistant A. baumannii as one of the most critical priorities in developing new classes of 

antibiotics and treatments due to failure in antibacterial response of the current ones (21). A. baumannii is a Gram-negative 

coccobacillus regarded as a nosocomial pathogen (71). During the COVID-19 crisis, increased incidences of co-infections 

were documented in the intensive care units of Qom, Iran (72). One of the fitness advantages of A. baumannii is its natural 

resistance to most mechanisms of action of antibiotics. Its carbapenem resistance is attributed to acquiring carba-

penemases. A novel type of siderophore cephalosporin named cefiderocol was designed to specifically target many species 

of Gram-negative bacteria (Enterobacteriaceae, especially P. aeruginosa and A. baumannii) by compromising cell wall bio-

synthesis while evading the β-lactam enzymes (73). 

In a phase III clinical trial across 16 countries, cefiderocol demonstrated comparable efficacy to the best available therapy in 

treating nosocomial pneumonia, UTI, and bloodstream infections caused by MDR Gram-negative strains. It is recommended 

as an alternative medication, particularly for Acinetobacter spp. infections (74). Another relevant finding regarding those 

with nosocomial pneumonia is the option of utilizing cefiderocol aside from meropenem (75). However, both reports of 

Basetti et al. (74) and Wunderink et al. (75) administered a high dosage of the drug with 2 milligrams every 8 hours. In 

addition, the study of Portsmouth and colleagues provided the basis for the application of the drug against UTI during the 

phase II clinical trial. Cefiderocol, at a similar dosage, was found to be non-inferior against imipenem-cilastatin (76). 

Susceptibility to cefiderocol in A. baumannii may decrease due to a single amino acid substitution in penicillin-binding 

protein 3 (PBP3), as evidenced by one isolate post-treatment, resulting in a fourfold increase in the minimum inhibitory 

concentration (MIC) (77). Analyzing and comparing changes in the sequence and target protein of novel drug classes can 

offer valuable insights to enhance their efficacy and durability.

Colistin, a polymyxin antibiotic, has been found ineffective in both monotherapy and combination therapy with 

carbapenem against Gram-negative bacteria (78-80). Due to its limited efficacy and associated adverse effects such as 

diarrhea and renal impairment, its use should be avoided, especially in critically ill patients (78, 81). In response to the 

decrease in effective antibacterial strategies over time, there has been a shift from broad-spectrum to pathogen-focused 

drug development. Addressing carbapenem-resistant A. baumannii and Acinetobacter calcoaceticus, Watkins et al. (82) 

developed a structure-based drug targeting three predominant classes of β-lactamases (Class A, C, and D). The novel 

sulbactam-durlobactam (SUL-DUR), acting as a β-lactam and β-lactamase inhibitor, has received urgent approval from the 

United States Food and Drug Administration (FDA) this year. SUL-DUR has met the non-inferiority criterion and exhibited 

tolerable adverse effects and lower nephrotoxicity compared to colistin and the imipenem-cilastatin combination (82, 83). 

This promising new treatment option is now available in the United States for severe cases of MDR-A. baumannii (83).

The use of nanoparticles (NPs) is one of the avenues to combat the looming resistance against antibiotics. The conjugation 

of imipenem with silver nanoparticles (AgNPs) (10-40 nanometers) signified effectiveness during in vitro studies of clinical 

isolates in Iran, where 76% were initially resistant to imipenem alone (84). AgNPs alone were proven to mediate bacterial 

apoptosis and obstruct DNA synthesis as revealed by Chen et al. (85). Most of the reported applications of NPs are in vitro 

with promising low cytotoxicity levels. However, there are hypotheses and studies regarding the co-emergence of 

resistance against the wide use of AgNPs which must be considered for appropriate use. McNeily and others (86), 

demonstrated the increased tolerance upon prolonged exposure observed in A. baumannii. The aforementioned case 

demands further testing to ensure the appropriate use of NPs as well as verifying its translational application to animal and 

clinical systems. Recently, novel integration of gold NPs (AuNPs) and DNA aptamer for the delivery of the antimicrobial 

peptide showed promising reduction of A. baumannii proliferation in mice (87). Another strategy explored by Al-Kadmy et 

al. (88) is by interfering with the capsule and biofilm formation with the use of copper oxide NPs. They found a decrease in 

efflux pump synthesis upon exposure but still recommended for further evaluation especially regarding its clinical safety 

(89). Meanwhile, nanoengineered vaccine delivery of outer membrane vesicles with the use of AuNPs provided a proof- 
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of-concept regarding its reliability and potential against pneumonia and sepsis (90). However, succeeding tests on mice 

with immune deficiency and other relevant human diseases must be cleared first prior to human trials (89). Developing 

vaccines dedicated to high-risk individuals can save more lives and simultaneously reduce reliance on antibiotics.

Methicillin-resistant Staphylococcus aureus (MRSA)

MRSA is originally a nosocomial pathogen which is prevalent now in the community which is automatically categorized as 

MDR (12). Its resistance to β-lactams is due to the gain of the mecA gene, which is responsible for the synthesis of penicillin- 

binding protein 2a (PBP2a) (90). In the review by Ambade et al. (91), targeting PBP2a with five- and six-membered 

heterocyclic compounds shows robust potential, yet integrating this knowledge while considering human microbiome and 

safety remains challenging. Linezolid, an oxazolidinone introduced in 2000, inhibits bacterial protein synthesis by binding 

to the 23S ribosomal subunit (92). Levonadifloxacin, a benzoquinolizine fluoroquinolone, has demonstrated superior cure 

rates against skin infections compared to linezolid and is now approved in India (92, 93). Ceftobiprole, a broad-spectrum 

new-generation cephalosporin, completed a phase III trial, proving non-inferiority to daptomycin (94). Although it has a 

relatively lower rate of adverse effects, gastrointestinal discomfort and nausea are common (94). Pharmacokinetic studies 

and clinical trials have shown its suitability for both Asian and non-Asian populations, as well as for pediatric patients 

(95-97). Contezolid, approved in China, outperforms linezolid in treating skin infections (98, 99).

Many bacterial infections may be treated using phage therapy; however, because lytic phages have a limited host range, 

most bacterial pathogens must be treated empirically with cocktails of phage strains that differ in their host ranges and 

virulence traits (100). Whittard and others established that four (4) among the 85 phages showed the best wide-range 

host potential, bacterial growth reduction, and biofilm inhibition against the globally distributed MRSA sequence types. 

Two phages (EW 41 and EW 71) are promising candidates to be studied coming from the genus Silviavirus and Kayvirus, 

respectively. One important consideration in developing phage therapy against MRSA is the possibility of horizontal gene 

transfer of prophages that may induce virulent toxins (100). Nonetheless, the option of phage utilization still lacks wide 

and authorized application.

There is still no vaccine available against hospital-acquired or community-acquired MRSA. However, one notable progress 

in this area is targeting cytotoxic alpha-hemolysin (Hla) delivered through epitope-based nanoparticles (HlaH35L) (101). Both 

the in vivo study in mice and human serological tests elicited neutralizing activities. However, the EpNP mode of 

vaccination proposed is still not the best candidate over the current alum-adjuvant vaccine (101). This continues to 

represent a groundbreaking approach in formulating a vaccine against MRSA that is set to enter clinical trials. It is 

recommended to evaluate the EpNP vaccine’s effect on immune cells and to incorporate other neutralizing epitopes.

Extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae

Another critically urgent superbug considered are found in the family of Enterobacteriaceae with a special priority with the 

species of K. pneumoniae, Enterobacter spp., and E. coli (102). These species often exhibit extended-spectrum β-lactamase 

or carbapenem resistance, contributing to high mortality rates in hospital intensive care units (ICU) (102). Clinical trials in 

their final stages frequently employ combination therapies, where one drug eradicates bacteria while the other targets 

specific resistance mechanisms to enhance effectiveness. In a phase III clinical trial involving 268 participants with 

complicated intra-abdominal infection (cIAI), the use of ceftolozane/tazobactam plus metronidazole yielded a superior cure 

rate difference of 2.1% (95% confidence interval) compared to the meropenem group (103). This treatment regimen 

demonstrated safety, with no reported adverse effects, in contrast to the three cases observed in the meropenem group. 

Most importantly, this serves as another option in treating ESBL-positive Enterobacterales especially for K. pneumoniae and 

E. coli (103). The subgroup analysis by Patterson et al. (104) supported the better clinical outcome of ceftolozane/ 

tazobactam against the ESBL-positive and/or carbapenemase-producing Enterobacterales. The most common type present 
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is the Cefotaxime-Munich (CTX-M-15) ESBL that also represents the global occurrence in the species of K. pneumoniae and 

E. coli (104, 105). The findings of Mikamo and others (106) in 100 Japanese cIAI patients coincide with the effective 

administration of ceftolozane/tazobactam with a clinical response rate of 92.0% with a baseline pathogen profile 

including both E. coli and K. pneumoniae. Hence, the most susceptible inhibitory mechanism must be identified or 

narrowed down first to have a higher chance of efficacy while ensuring the longevity of a designed drug or treatment in 

addressing the highly resistant Enterobacterales. In addition, a fourth generation with a broad-spectrum drug eravacycline, 

now FDA approved, has comparative efficacy as meropenem against MDR- and XDR-Enterobacterales (73, 107). Under 

clinical trials, eravacycline is non-inferior to meropenem with a better safety profile and low adverse effects (107). 

Meanwhile, there are no adequate and conclusive reports on the use of NPs in treating MDR-Enterobacterales. In one 

published in vitro study in a different susceptibility profile of K. pneumoniae (a clinical XDR strain), α-lipoic acid-capped 

AgNPs associated with imipenem synergistic effects in reducing the cell viability and biofilm formation (108). The study 

utilized the augmentation of the α-lipoic acid which minimized the required concentration of AgNPs without diminishing its 

effectiveness (108). As observed in many in vitro studies, the antimicrobial activity of metal oxides and metallic NPs stems 

from their accumulation in the bacterial cell wall, disrupting the organism’s physiological processes (109). The next crucial 

steps in advancing the field of nano-antibiotics include conducting pharmacokinetic and safety evaluations in animal 

models (109).

MDR-Pseudomonas aeruginosa

P. aeruginosa, a Gram-negative bacterium, is also included in the family of Enterobacterales (110). It is an opportunistic 

pathogen, highly implicated in the healthcare setting for its MDR profile, that complicates patients with existing conditions 

such as pneumonia, cystic fibrosis, skin wounds or damages, and UTI (110). MDR-P. aeruginosa ranked second, after S. 

aureus, as the most frequently occurring pathogen in the healthcare facilities and ICU in the report of the National 

Healthcare Safety Network in the United States of America in 2017 (111). About 25% are resistant to carbapenem, 

cephalosporins, or fluoroquinolones while 18% of ICU patients have serious MDR strains (111). Patients with chronic 

diseases or immunodeficiency are mostly at risk. P. aeruginosa increases its infection capacity by toxin secretion and biofilm 

formation (112). The presence of Type III secretion systems is highly associated with persistence of infection, cell apoptosis, 

and high morbidity (113). 

Current diagnostic strategies prioritize antimicrobial susceptibility characterization based on culture samples to guide 

appropriate antibiotic selection, therapy, and prognosis. Delayed or inappropriate antibiotic treatment has been linked to 

significantly poor outcomes (114-116). The debate over monotherapy versus combination therapy persists, with questions 

regarding their relative superiority. However, a systematic review by Babich et al. (117) encompassing a multicenter 

analysis of 1119 patients found no clinical advantage between monotherapy and combination therapy in treating 

bacteremia. Combination therapy offers the advantage of leveraging established synergistic effects by targeting multiple 

mechanisms of inhibition (114, 118). Conversely, monotherapy proponents argue that new antibiotics can exert more 

precise and proven antimicrobial effects, aimed at achieving a cure (114, 118).

Resistance due to β-lactamases is one of the predominant phenotypes in P. aeruginosa which could be avoided with the 

use of carbapenems or a new generation of β-lactams. On the other hand, expression of carbapenemases, especially metallo- 

beta-lactamases, cefiderocol can be the safe therapy that is also applicable to P. aeruginosa (114). In 2018, “difficult-to-treat” 

(DTR) P. aeruginosa was coined to recognize its broad resistance to many antibiotics such as aztreonam, ceftazidime, 

cefepime, ciprofloxacin, imipenem-cilastatin, levofloxacin, piperacillin-tazobactam, and meropenem (119). Depending on 

patients’ medical circumstance, antibiotic choice and regimen can be formulated. The new antibiotic options for those with 

pyelonephritis and UTI recommended by Infectious Diseases Society of America are as follows: ceftolozane-tazobactam, 

ceftazidime-avibactam, imipenem-cilastatin-relebactam, and cefiderocol (118). Meanwhile, ceftolozane-tazobactam, ceftazidime- 

avibactam, and imipenem-cilastatin-relebactam can be utilized for infections other than the urinary tract (118). The use of 
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ceftolozane-tazobactam, a cephalosporin and β-lactamase inhibitor, has already been approved with significantly lower 

mortality risk compared to meropenem in the case of ventilated hospital-acquired bacterial pneumonia (120). The 

aforementioned combination is generally administered as a monotherapy to treat complicated UTI, and pyelonephritis with 

a recently established pediatric safety (118, 121). The pair of ceftazidime-avibactam works under the principle that avibactam 

deactivates β-lactamases in class A and C and a number of class D while restoring the susceptibility to ceftazidime (122). 

Lastly, imipenem-cilastatin-relebactam can be utilized for critically ill patients who have hospital-acquired/ventilator- 

associated bacterial pneumonia as proven by the phase III clinical trial reported by Titov et al. (123).

Phage therapy authorization is gradually transitioning towards clinical trials. A notable example is a phase I/II trial 

conducted in France, where a cocktail of bacteriophages was used against P. aeruginosa infections in wound burns (124). 

The study had a small sample size (n=27) demonstrating a relevant decrease in bacterial load but with slower progression 

with those treated with the phage cocktail than standard-of-care (124). Challenges on creating a standard phage 

treatment requires a substantial cohort to further evaluate and explore its potential against MDR- and XDR-P. aeruginosa. 

In a case report of Law et al. (125) concerning a 26-year old patient with cystic fibrosis, successful and safe complementary 

bacteriophage therapy was demonstrated with no recorded adverse effects and pseudomonal recurrence. Another case 

report on personalized bacteriophage therapy showed clinically significant advancement as a complementary treatment, 

together with IV antibiotic regimen, against MDR-P. aeruginosa (126). Phage vFB297 from the genus of Pakpunavirus was 

administered through a nebulizer for 20 minutes for five consecutive days and cleared any respiratory obstruction shown in 

CT scan (126). The patient is chronically infected by MDR-P. aeruginosa making eradication close to impossible but the 

potential for future use of phage therapy against acute cases can be an alternative. However, challenges persist in selecting 

appropriate phages and strains of MDR-P. aeruginosa, posing obstacles to advancing into clinical trials and ensuring 

accessibility of such treatments once developed.

MDR-Mycobacterium tuberculosis

Multidrug-resistant tuberculosis (MDR-TB) is characterized by immunity to isoniazid and rifampicin hence requiring a 

lengthened treatment recommended by the WHO against MDR-M. tuberculosis (127). Recent standardized treatments 

lowered the 18-24 months treatment regimen by 9-12 months (127). One reatment regimen using delamanid, linezolid, 

and levofloxacin with the addition of pyrazinamide obtained a promising 9-month treatment period against fluoro-

quinolone-sensitive MDR-M. tuberculosis in 12 participating hospitals in South Korea (128). Delamanid is verified as safe 

treatment for adults which has been now demonstrated to be applicable treatment to children upon pediatric formulation 

(129). However, both linezolid and levofloxacin posed adverse effects in adults and children that must be considered upon 

regimen selection and formulation, respectively (130, 131). Meanwhile, Esmail et al. (132) showed that the oral regimen 

of levofloxacin, bedaquiline, and linezolid can shorten the treatment to six (6) months compared to the 9-month 

standard-of-care treatment by WHO. Risk to benefit ratio must be further elucidated to lessen the burden of observed 

toxicity as the study only included those 18 years old and above with specific drug susceptibility requirements (132). The 

use of NPs in treating MDR-TB and extensively drug-resistant TB is still lacking and pioneering. The current knowledge is 

that AgNPs and zinc oxide showed anti-mycobacterial suppression but not the capacity to kill MDR- and XDR-M. 

tuberculosis strains (133). Meanwhile, mutation in the katG gene that renders resistance to isoniazid can be further 

addressed through the carbon nanotube delivery system (134). This works in multi-walled carbon nanotubes where the 

antibiotic 4-pyridine carboxylic acid hydrazide (INH) and fluoxetine exert effective and additive results to circumvent the 

present defense mechanisms of MDR-TB and XDR-TB (134). Successful bacterial cell wall destruction and lowered safe 

doses of fluoxetine to kill TB-infected macrophages were the highlights of the new described delivery system (134). It is 

imperative to note that further evaluations under animal models up to clinical trials must be pursued.

In summary, the global health-care burden is presently overwhelmed by the narrowing effective antibiotics and limiting 

treatment strategies. Combination antibiotic therapies and use of novel approved antimicrobial drugs are still the main 
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approach against priority pathogens. Although the WHO encourages the acceleration of development of new generation 

antibiotics, challenges regarding the lengthy processes until approval, research and development investment and cost, and 

slim success rates are still the major hindrances faced by the government and private sector. Moreover, the foundational 

trials for the use of phage therapy and NPs are still limited despite promising in vitro findings and few prospects in the 

conducted animal research.

EMERGING MOLECULAR STRATEGIES FOR COMBATING ANTIBIOTIC RESISTANCE

Novel strategies are currently being explored to address the increasing difficulty in diagnosing and treating infections in the 

post-antibiotic era. Some short-term strategies involve various antibiotic combination treatments (135) and antibiotic-free 

approaches such as phage-based therapies and vaccines. These methods, however, only work selectively on certain 

bacterial strains, leaving gaps in addressing the full spectrum of potential pathogens (136, 137). While vaccines prove 

effective as preventive measures, they cannot be used to treat acute infections (138-140). Furthermore, other approaches 

like microbiome manipulation or host immune system modulation have shown limited success (22). Consequently, there is 

an urgent need for new approaches to antimicrobial therapy that can deliver better outcomes. This section provides an 

overview of emerging strategies for combating antibiotic resistance, including nanomaterials-based antimicrobials and 

CRISPR/Cas systems integrated with nanomaterial-based delivery.

Nanomaterials-based Antimicrobial Agents

The number of published works on nanomaterials has grown exponentially over the past years (141). A summary of the 

recent advances in targeted nanomaterials-based antibacterial therapy is already provided by Geng et al. (142). Nano-

materials refer to substances, typically metals, and polymers, that are engineered or manipulated at the nanoscale, which 

usually range from 1 to 100 nanometers (143). Their therapeutic activity is influenced by their shape, size, and surface 

chemistry (144). The sizes and structures of various nanomaterials are similar to bacterial biomolecules, enabling diverse 

interactions with cellular components. This characteristic can be finely tuned through surface modifications, making them 

formidable tools against antibiotic-resistant pathogens (145). Some next-generation nanomaterials can also exhibit 

antimicrobial properties when activated by external stimuli. These types of nanomaterials can remain dormant until 

triggered by certain forms of stimuli such as light, magnetism, ultrasound, or a change in pH. This unique property makes 

them less likely to cause any harmful side effects on host cells or non-pathogenic microbes (142).

The use of nanomaterials in antimicrobial therapy, as an alternative or complement to existing antibiotics, shows the 

potential to intervene where conventional antibiotics fail (146). Numerous studies have demonstrated that nanomaterials 

utilize diverse antibacterial mechanisms, making it harder for pathogens to develop resistance (147). These mechanisms 

include (1) cell membrane penetration, (2) oxidative stress via the production of reactive oxygen species (ROS), (3) DNA 

synthesis inhibition, (4) enzyme activity inhibition, (5) protein synthesis inhibition, and (6) prevention of biofilm formation 

(Fig. 1). The work of Ndayishimiye et al. (148) provides a detailed description of the general types of NPs used for 

antimicrobial applications (porous silica NPs, liposomes, polymeric NPs, dendritic NPs, metallic NPs) and their mechanisms 

of action. However, some findings suggest that nanomaterials trigger the evolution of AMR, particularly, metal oxide NPs 

(149). These conflicting findings were addressed in the review of Xie et al. (150).

NPs could also be functionalized with biomolecules that have an affinity to the external structures of bacteria. This 

approach greatly enhances the ability of the NPs to selectively interact with the targeted pathogens, thus improving 

therapeutic outcomes and reducing side effects (151). Gao et al. (152) showed that poly (lactive-co-glycolic acid) (PLGA) 

NPs preloaded with antibiotics and coated with the membrane of S. aureus-secreted extracellular vesicles could actively 

target both S. aureus infected macrophages in vitro and heavily infected major organs of mice models, particularly the 
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kidneys and lungs. A “smart” delivery of certain antibiotics in infected tissues may also be done. As demonstrated in the 

study by Wang et al. (153), moxifloxacin, a broad-spectrum antibiotic, was encapsulated in 4-(hydroxymethyl) phenyl-

boronic acid pinacol ester (HPAP)-modified cyclodextrin (Oxi-αCD). This material rapidly breaks down in the presence of 0.5 

millimolar (mM) of hydrogen peroxide enabling the controlled release of the drug to infected lung tissues with abnormally 

high ROS levels (154, 155). The surface of the NPs was coated with 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy 

(polyethylene glycol) (DSPE-PEG) and folic acid-conjugated1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy 

(polyethylene glycol)-3400 (DSPE-PEG-FA) to enable targeted elimination of infected macrophages and mucus penetration 

in the infected areas. Previous studies have shown that Folic-acid-modified NPs can target infected macrophages that 

overexpress folate receptors (FR) (156, 157). Intravenous delivery of these engineered NPs resulted in an increased survival 

rate in P. aeruginosa-infected mice. The NPs were also found to have accumulated in infected lung tissues suggesting 

enhanced active targeting ability.

Out of the five identified NPs commonly used for antimicrobial therapy, metallic NPs have the most direct antimicrobial 

activity. Metal ions released from the extracellular space can penetrate the cells and disrupt their biological functions, 

leading to the production of ROS. The resulting oxidative stress also hinders the oxidation of glutathione, which is an 

important defense mechanism employed by bacteria against ROS (158). Metallic-based NPs can form nonspecific links with 

organic compounds and other cellular components, which can result in a wide range of effects. For example, these NPs 

can cause damage to DNA and proteins, which can in turn impact cell division and enzymatic activity (147, 159). 

Furthermore, metallic NPs can disrupt protein synthesis by causing the denaturation of ribosomes (160). The paper of 

Sklodowski et al. (161) provides a comprehensive review of the synthesis and design of metallic NPs and metallic NP-based 

nanosystems (used in combination therapy) for the treatment of drug-resistant bacterial and fungal infections. 

For instance, AgNPs are at the forefront of next-generation antibiotics and are the most widely used NPs among all 

commercialized nanomaterials due to their remarkable antimicrobial properties (162). AgNPs can penetrate bacterial 

membranes and release Ag+ ions which can trigger the release of ROS, causing oxidative stress. Ag+ ions and AgNPs can 

also bind to DNA leading to protein inactivation and eventual cell death (163). A recent study evaluated the antimicrobial 

Fig. 1. Common antibacterial mechanisms of nanoparticles. Adapted from Karnwal et al. (145). Created with BioRender.com.
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activity of AgNPs in combination with conventional antibiotics against wild-type Gram-positive and Gram-negative bacteria 

including antimicrobial-resistant ESBL-positive K. pneumoniae. Results showed that AgNPs exhibited significant antimi-

crobial activity against Gram-negative wild-type strains of E. coli, A. baumannii, K. pneumoniae, P. aeruginosa, (MIC: 

16-128 μg/mL) while minimal to no antimicrobial activity was observed against Staphylococcus saprophyticus, S. aureus, 

Staphylococcus sciuri, and S. epidermidis. AgNPs were also effective against the antimicrobial-resistant K. pneumoniae 

isolates. Moreover, AgNPs used in conjugation with kanamycin, colistin, rifampicin, or vancomycin resulted in remarkable 

synergistic activities against K. pneumoniae clinical isolates. The AgNPs and kanamycin combination demonstrated 

synergistic antimicrobial activity against all AMR K. pneumoniae clinical isolates (164). These results suggest that the 

several possible interactions between AgNPs and the different types of antibiotics, and the inherent genetic makeup of 

isolates may be the cause of variations in susceptibility. It was, however, demonstrated in the study of Lu et al. (165) how 

exposure of bacteria to sub-lethal concentrations of AgNPs and Ag+ ions accelerated the horizontal gene transfer of 

antibiotic resistance genes. It was observed that the levels of ROS production, increased membrane permeability, and SOS 

response of the cell play a role in the enhanced conjugative transfer of resistance genes.

Overall, nanomaterials hold significant potential in combating infectious diseases. They offer numerous advantages, 

including enhanced solubility, targeted drug delivery, controlled release, and enhanced cellular uptake (166). Table 1 

provides a summary of clinical trials that highlight the recent exploration of various nanoparticle technologies for 

combating bacterial infections. AgNPs are prominently featured in various formulations and applications, targeting a 

diverse range of pathogens, including antibiotic-resistant strains. Additionally, a significant focus on dental applications is 

evident, with trials investigating the efficacy of NPs in caries management and oral hygiene (Table 1). While the focus of 

the presented clinical trials is on dental applications, the abundance of ongoing research underscores the potential of 

nanomaterials in addressing AMR and improving clinical outcomes across diverse healthcare settings.

Table 1. Different studies under the clinical trial phase (Retrieved and modified from clinicaltrials.gov and trialsearch. 

who.int)

Study Title Status Clinical Trial Identifier

Modified Surface of PLGA Nanoparticles in Smart Hydrogel: A Randomized 

Clinical Trial to Establish an Advanced Strategy Against Antibiotic Resistant 

Infections in Endodontics

Completed NCT05475444

A New Clinical Use of Ferumoxytol Nanoparticles: An Antibiofilm Treatment Completed NCT06110494

Evaluation of Antimicrobial Efficacy and Postoperative Pain After Using 

Silver Nanoparticles and Chitosan Nanoparticles Against Enterococcus 

faecalis and Candida albicans Biofilm

Completed NCT06172023

Bactericidal Effect of Silver Nanoparticles on Methecillin and Vancomycin 

Resistant Staphylococcus. Aureus (MRSA) Isolated From Critically Ill Patients
Completed NCT04431440

Nanosilver Fluoride to Prevent Dental Biofilms Growth Completed NCT01950546

Clinical Study of Antibacterial Nanoparticles Incorporated in Composite 

Restorations
Completed NCT00299598

An Antimicrobial Effect of ZnO Nanoparticles Coated Orthodontic Molar 

Tube (A Randomized Clinical Trial)
Completed NCT06089720

Comparative Study Between Hydroxyapetite Nanoparticles and Tricalcium 

Phosphate Nanoparticles Loaded on Platelet Rich Fibrin Membranes for 

Treatment of Gingival Recession

Completed NCT06016894

Clinical Assessment of Antibacterial Anti-inflammatory Activities of Yarrow 

Moringa Herbal Combinations in Bucco Adhesive Films
Completed NCT06070571
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CRISPR-Cas and Nanoparticle System-Based Strategy

Several papers have shown that NPs used in conjugation with the CRISPR-Cas system show promise as a novel strategy in 

combating MDR bacterial infections. CRISPR-Cas9 is the most widely used gene editing tool among CRISPR-Cas Systems 

(167). The CRISPR-Cas is an adaptive immune system of bacteria and archaea against invading viruses and mobile genetic 

elements (168). The CRISPR-Cas system comprises three primary components: (a) a leading sequence, (b) an operon 

containing a cluster of genes encoding Cas proteins, and (c) a CRISPR DNA, a series of repetitive sequences (repeats) 

separated by non-repetitive sequences (spacers).

The CRISPR-Cas system operates in three stages: adaptation, expression, and interference. During adaptation, the 

Cas1-Cas2 complex integrates invading DNA into the CRISPR array as a new spacer. In the expression stage, the CRISPR 

Table 1. Different studies under the clinical trial phase (Retrieved and modified from clinicaltrials.gov and trialsearch. 

who.int) (Continued)

Study Title Status Clinical Trial Identifier

Evaluation of the Antibacterial Effect of Nano Silver Fluoride Versus 

Chlorhexidine on Occlusal Carious Molars Treated With Partial Caries 

Removal Technique: A Randomized Clinical Trial

Completed NCT03186261

Topical Application of Silver Nanoparticles Reduced Oral Pathogens in 

Mechanically Ventilated Patients: A Randomized Controlled Clinical Trial
Completed NCT02761525

Clinical Evaluation of Silver Nanoparticles in Comparison to Silver Diamine 

Fluoride in Management of Deep Carious Lesions
Completed NCT05231330

Effectiveness of Nano-silver Fluoride and Silver Diamine Fluoride for 

Arresting Early Childhood Caries (a Randomized Clinical Trial)
Completed NCT05255913

A Randomized Controlled Trial of the Efficacy of a Novel Silver Nanoparticle 

Gel Versus a Common Antibacterial Hand Gel Against Bacterial Hand Flora
Completed NCT00659204

Remineralization of Dentine Caries Using Nanosilver Fluoride and Casein 

Phosphopeptides-amorphous Calcium Phosphate (A Randomized Clinical Trial)
Completed NCT04930458

Evaluation of the effect of coating thermoplastic retainers with titanium 

dioxide nanoparticles on the counting of Strepococcus mutans: a split 

mouth randomized clinical trial

Recruitment Complete IRCT20210305050580N1

Antimicrobial Efficacy of Biogenic Gold Nano Particle From Pelargonium 

graveolens Leaves Extract Mouthwash for Children. (A Randomized 

Controlled Trial)

Recruiting NCT05816512

Metallic Nanoparticles: Evaluation of Their Antibacterial, Antibiofilm and 

Synergistic Effect in Combination With Antibiotics on Nosocomial Bacteria
Recruiting NCT04775238

Synergistic Antibacterial Efficiency of Zinc Oxide Nanoparticles and 

Polymorphonuclear Neutrophils
Recruiting ChiCTR2100045706

Comparison of the antibacterial effect of tetracycline gel and gel containing 

mesoporous silica nanoparticles loaded with tetracycline in the gingival 

sulcus fluid at the site of junction between the implant and the abutment

Recruiting IRCT20210306050605N1

Silver nanoparticles attenuate the antimicrobial activity of the innate 

immune system by inhibiting neutrophil phagocytosis and reactive oxygen 

species production

Recruiting ChiCTR2000041192

Evaluation of antibacterial efficacy in the elimination of endodontic 

microflora by addition of silver nanoparticles and proton pump inhibitors to 

traditional photodynamic therapy: An in vivo study

Not Yet Recruiting CTRI/2023/07/055249

Evaluation of magnetic nanoparticles as pulpotomy medicament in primary 

teeth randomised controlled trial
Not Yet Recruiting CTRI/2022/02/040656
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array is transcribed into precursor CRISPR RNAs, which are then processed into mature crRNAs with the assistance of 

tracrRNA. In the interference stage, the mature crRNAs guide Cas proteins to the target DNA, resulting in enzymatic 

cleavage and a double-stranded DNA break (169). These mechanisms observed in the CRISPR-Cas system make it an 

effective method for eliminating foreign genetic elements with high precision.

The CRISPR-Cas system can be used to make antibiotic-resistant bacteria sensitive to antibiotics again by removing plasmids 

that carry genes for antibiotic resistance. This method has been successfully used by Kim et al. (170) to eliminate 

ESBL-producing E. coli bacteria by targeting a conserved antibiotic resistance gene, identified by analyzing the genomes of 

over 1000 ESBL mutants. ESBL bacteria are typically resistant to multiple antibiotics and can transfer their antibiotic 

resistance plasmids to other bacteria through horizontal gene transfer. In addition, the CRISPR-Cas system can be used to 

selectively eliminate resistant strains from complex bacterial populations. This can be achieved by introducing a plasmid or 

phage carrying an engineered CRISPR-Cas9 system that targets a unique sequence found only in the resistant strains (171, 

172). The potential of CRISPR-Cas9 technology in tackling AMR has been highlighted by Javed et al. (173), with results 

from several preclinical studies demonstrating its effects. However, based on their review, certain obstacles still need to be 

overcome, such as improving the system’s efficiency and specificity, creating effective methods of drug delivery, and 

addressing safety concerns. Moreover, the use of CRISPR-Cas antimicrobials may give rise to new antibiotic-resistant strains 

of bacteria (174).

Nanotechnology can be used alongside the CRISPR-Cas system to enhance its delivery into target cells. However, delivering 

the naked genetic elements of CRISPR-Cas into cells can be challenging due to various factors like serum protein 

adsorption, rapid clearance from the bloodstream and phagocyte uptake, inefficient outcomes due to the inability to 

specifically target the intended cells, and negative immune system reactions leading to toxic side effects. To overcome 

these issues, researchers have developed polymeric, lipid, and metal NPs which can serve as gene carriers (175).

In order to perform gene editing using CRISPR-Cas9, it is necessary to package the Cas9 endonuclease and the single guide 

RNA (sgRNA) specific to the CRISPR system into delivery vehicles. Current methods used to administer the CRISPR-Cas9 

system, include: (a) employing a plasmid that encodes both Cas9 and sgRNA, (b) utilizing two distinct plasmids for each 

(Cas9 and sgRNA), (c) deploying mRNA for Cas9 and gRNA, or (d) utilizing a complex of Cas9 and gRNA (176). However, 

each of these delivery systems has its limitations. The large size of DNA plasmids makes it difficult to penetrate highly 

selective cellular and nuclear membranes, which can hinder their effectiveness. While mRNA forms of Cas9 and gRNA may 

overcome these issues, the unstable nature of mRNA and its sensitivity to RNAses makes it an undesirable method of 

delivery. Furthermore, while viral vectors are commonly utilized for delivering CRISPR-Cas systems, they also present a few 

disadvantages which include limited loading and packaging efficiency, narrow host range, and an increased likelihood of 

causing cancer and triggering an unfavorable immune response (177, 178) (Fig. 2). Notably, nanoparticle-based delivery 

methods using lipid, polymeric, and gold NPs, of the CRISPR system show promise in addressing the aforementioned 

limitations by enabling targeted delivery and improving stability (179). Wan et al. (177) provide a thorough review of 

numerous studies on using tailored/modified NPs for CRISPR-Cas9 delivery. Their paper revealed that for CRISPR delivery, 

lipid NPs have been the most extensively researched NP systems. Modified lipid NPs were found to improve gene knockout 

efficiency and increase cellular uptake (180, 181). Recently, a study demonstrated how CRISPR-Cas9 was delivered into 

wild-type colistin-resistant E. coli using modified single-wall carbon nanotubes (SWCNTs). This SWCNT-CRISPR complex 

yielded promising results through two approaches. First, the CRISPR-Cas9 system cleaved the targeted mcr-1 gene (colistin 

resistance gene) and the conductive SWCNTs disrupted the electron transfer chain leading to a shortage of ATP supply 

(182). 

The work of Li et al. (183) demonstrates how CRISPR-Cas systems, NPs, and conventional antibiotics can be used in synergy 

to address AMR. In their paper, they describe the development and mechanisms of a multifunctional pH-sensitive 

CRISPR-Cas9-based nanosystem likened to a “nanobomb” against carbapenem-resistant A. baumannii (CRAB). Briefly, 

CRISPR-Cas9-sgRNA targeted the blaNDM gene to inhibit the translation of metallo-β-lactamases, subsequently re-sensitizing 
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CRAB to imipenem and enhancing the synergistic antimicrobial activities of imipenem and ZnO-SiO2 NPs. Furthermore, 

L-arginine mixed in the nanosystem reacts with the high ROS levels to form nitric oxide (NO) reaction products which are 

known antibacterial agents. Conversely, NO also possesses anti-inflammatory properties, promotes proliferation, and 

accelerates wound healing in infected areas (184). This CRISPR-Cas9 nanosystem also showed promising effects in acute 

pneumonia and peritonitis mouse models including mitigating infections, inhibiting inflammatory reactions, and promoting 

tissue repair of infection sites (183). Combining engineered NPs/nanosystems and CRISPR-Cas systems holds great 

potential in tackling AMR. However, this field of research is still in its early stages and requires further exploration and 

development.

CONCLUSION

AMR poses a significant and growing global health threat, jeopardizing the effectiveness of existing antibiotics and 

highlighting the urgent need for novel therapeutic strategies. This work has comprehensively explored the complexities of 

AMR, encompassing its emergence, mechanisms, and detrimental impact. While the discovery and development of new 

antibiotics remain crucial, this review emphasizes the promise of emerging molecular approaches, namely nanomaterials- 

based antimicrobials and CRISPR-Cas systems, in combating AMR. However, further research and development are 

Fig. 2. Delivery methods of the CRISPR-Cas9 system to facilitate gene editing. A. Phage-based delivery: The CRISPR-Cas system 

sequences are introduced into the cell via phages. B. Plasmid-based delivery: The plasmid-borne CRISPR-Cas system con-

taining a synthesized single guide RNA that targets the antibiotic resistance gene (ARG) can be transferred into cells and 

transcribed into Cas9 mRNA, tracrRNA, and sgRNA. Following the translation of Cas9 mRNA into the Cas9 protein, it forms a 

ribonucleoprotein (RNP) complex with sgRNA. Directed by the sgRNA, the RNP complex then edits the target genes. C. 

Nanoparticle-based delivery: Cas9 and sgRNA can be delivered via mRNA or Cas9-sgRNA RNP complexes, facilitated by NPs. 

When delivered to bacteria cells the CRISPR-Cas system can eliminate ARG on plasmids and re-sensitize them to antibiotics. 

Adapted from Tao et al. (178). Created with BioRender.com.
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essential to refine these strategies, address limitations such as cost-effectiveness and safety concerns, and ensure their 

successful translation into clinical practice.
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