All Issue

2022 Vol.52, Issue 4 Preview Page

Original Article

31 December 2022. pp. 170-183
Abstract
References
1
Mike LA, Dutter BF, Stauff DL, Moore JL, Vitko NP, Aranmolate O, et al. Activation of heme biosynthesis by a small molecule that is toxic to fermenting Staphylococcus aureus. Proc Natl Acad Sci U S A 2013;110:8206-11. 10.1073/pnas.130367411023630262PMC3657828
2
Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F, Phogat S. Staphylococcus aureus vaccine research and development: the past, present and future, including novel therapeutic strategies. Front Immunol 2021;12:705360. 10.3389/fimmu.2021.70536034305945PMC8294057
3
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015;39:592-630. 10.1093/femsre/fuv00925862688
4
Shin M, Jin Y, Park J, Mun D, Kim SR, Payne SM, et al. Characterization of an antibacterial agent targeting ferrous iron transport protein FeoB against Staphylococcus aureus and Gram-positive bacteria. ACS Chem Biol 2021;16:136-49. 10.1021/acschembio.0c0084233378170
5
Shin M, Park J, Jin Y, Kim IJ, Payne SM, Kim KH. Biochemical characterization of bacterial FeoBs: A perspective on nucleotide specificity. Arch Biochem Biophys 2020;685:108350. 10.1016/j.abb.2020.10835032220566
6
Shin M, Mun D, Choi HJ, Kim S, Payne SM, Kim Y. Identification of a new antimicrobial agent against bovine mastitis-causing Staphylococcus aureus. J Agric Food Chem 2021;69:9968-78. 10.1021/acs.jafc.1c0273834406764
7
Hammer ND, Skaar EP. Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev Microbiol 2011;65:129-47. 10.1146/annurev-micro-090110-10285121639791PMC3807827
8
Sheldon JR, Heinrichs DE. The iron-regulated staphylococcal lipoproteins. Front Cell Infect Microbiol 2012;2:41. 10.3389/fcimb.2012.0004122919632PMC3417571
9
Heinrichs JH, Gatlin LE, Kunsch C, Choi GH, Hanson MS. Identification and characterization of SirA, an iron-regulated protein from Staphylococcus aureus. J Bacteriol 1999;181:1436-43. 10.1128/JB.181.5.1436-1443.199910049373PMC93531
10
Zhu H, Xie G, Liu M, Olson JS, Fabian M, Dooley DM, et al. Pathway for heme uptake from human methemoglobin by the iron-regulated surface determinants system of Staphylococcus aureus. J Biol Chem 2008;283:18450-60. 10.1074/jbc.M80146620018467329PMC2440603
11
Wright JA, Nair SP. The lipoprotein components of the Isd and Hts transport systems are dispensable for acquisition of heme by Staphylococcus aureus. FEMS Microbiol Lett 2012;329:177-85. 10.1111/j.1574-6968.2012.02519.x22309509
12
Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P, Jelenska J, et al. Passage of heme-iron across the envelope of Staphylococcus aureus. Science 2003;299:906-9. 10.1126/science.108114712574635
13
Mazmanian SK, Ton-That H, Su K, Schneewind O. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc Natl Acad Sci U S A 2002;99:2293-8. 10.1073/pnas.03252399911830639PMC122358
14
Beasley FC, Marolda CL, Cheung J, Buac S, Heinrichs DE. Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by Staphyloferrin A, Staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence. Infect Immun 2011;79:2345-55. 10.1128/IAI.00117-1121402762PMC3125851
15
Beasley FC, Vinés ED, Grigg JC, Zheng Q, Liu S, Lajoie GA, et al. Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Mol Microbiol 2009;72:947-63. 10.1111/j.1365-2958.2009.06698.x19400778
16
Cockayne A, Hill PJ, Powell NB, Bishop K, Sims C, Williams P. Molecular cloning of a 32-kilodalton lipoprotein component of a novel iron-regulated Staphylococcus epidermidis ABC transporter. Infect Immun 1998;66:3767-74. 10.1128/IAI.66.8.3767-3774.19989673260PMC108413
17
Wilcox MH, Williams P, Smith DG, Modun B, Finch RG, Denyer SP. Variation in the expression of cell envelope proteins of coagulase-negative staphylococci cultured under iron-restricted conditions in human peritoneal dialysate. J Gen Microbiol 1991;137:2561-70. 10.1099/00221287-137-11-25611783903
18
Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F, Phogat S. Staphylococcus aureus vaccine research and development: the past, present and future, including novel therapeutic strategies. Front Immunol 2021;12:705360. 10.3389/fimmu.2021.70536034305945PMC8294057
19
Giersing BK, Dastgheyb SS, Modjarrad K, Moorthy V. Status of vaccine research and development of vaccines for Staphylococcus aureus. Vaccine 2016;34:2962-6. 10.1016/j.vaccine.2016.03.11027105559
20
van Dalen R, Peschel A, van Sorge NM. Wall teichoic acid in Staphylococcus aureus host interaction. Trends Microbiol 2020;28:985-98. 10.1016/j.tim.2020.05.01732540314
21
Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123-53. 10.1093/femsre/fuz03031841134PMC7053580
22
Paling FP, Olsen K, Ohneberg K, Wolkewitz M, Fowler VG, DiNubile MJ, et al. Risk prediction for Staphylococcus aureus surgical site infection following cardiothoracic surgery; A secondary analysis of the V710-P003 trial. PLoS One 2018;13:e0193445. 10.1371/journal.pone.019344529561866PMC5862433
23
Frenck RW, Creech CB, Sheldon EA, Seiden DJ, Kankam MK, Baber J, et al. Safety, tolerability, and immunogenicity of a 4-antigen Staphylococcus aureus vaccine (SA4Ag): Results from a first-in-human randomised, placebo-controlled phase 1/2 study. Vaccine 2017;35:375-84. 10.1016/j.vaccine.2016.11.01027916408
24
Tomar N, De RK. Immunoinformatics: a brief review. Methods Mol Biol 2014;1184:23-55. 10.1007/978-1-4939-1115-8_325048118
25
Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 2017;45:W24-9. 10.1093/nar/gkx34628472356PMC5570230
26
Chung HY, Yoon JA, Han BY, Song EY, Park MH. Allelic and haplotypic diversity of HLA-A, -B, -C, and -DRB1 genes in Koreans defined by high-resolution DNA typing. Korean J Lab Med 2010;30:685-96. 10.3343/kjlm.2010.30.6.68521157157
27
Stranzl T, Larsen MV, Lundegaard C, Nielsen M. NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 2010;62:357-68. 10.1007/s00251-010-0441-420379710PMC2875469
28
Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res 2020;48:W449-54. 10.1093/nar/gkaa37932406916PMC7319546
29
Ayyagari VS, T C V, K AP, Srirama K. Design of a multi-epitope-based vaccine targeting M-protein of SARS-CoV2: an immunoinformatics approach. J Biomol Struct Dyn 2022;40:2963-77. 10.1080/07391102.2020.185035733252008PMC7754933
30
Alexander J, del Guercio MF, Frame B, Maewal A, Sette A, Nahm MH, et al. Development of experimental carbohydrate-conjugate vaccines composed of Streptococcus pneumoniae capsular polysaccharides and the universal helper T-lymphocyte epitope (PADRE). Vaccine 2004;22:2362-7. 10.1016/j.vaccine.2003.11.06115193395
31
Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 1999;112:531-52. 10.1385/1-59259-584-7:53110027275
32
Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 2007;8:4. 10.1186/1471-2105-8-417207271PMC1780059
33
Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v.2--a server for in silico prediction of allergens. J Mol Model 2014;20:2278. 10.1007/s00894-014-2278-524878803
34
Dhanda SK, Vir P, Raghava GPS. Designing of interferon-gamma inducing MHC class-II binders. Biol Direct 2013;8:30. 10.1186/1745-6150-8-3024304645PMC4235049
35
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open Source Drug Discovery Consortium,et al. In silico approach for predicting toxicity of peptides and proteins. PLoS One 2013;8:e73957. 10.1371/journal.pone.007395724058508PMC3772798
36
Rcheulishvili N, Mao J, Papukashvili D, Liu C, Wang Z, Zhao J, et al. Designing multi-epitope mRNA construct as a universal influenza vaccine candidate for future epidemic/pandemic preparedness. Int J Biol Macromol 2022;226:885-99. 10.1016/j.ijbiomac.2022.12.06636521707
37
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583-9. 10.1038/s41586-021-03819-234265844PMC8371605
38
Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 2007;130:1071-82. 10.1016/j.cell.2007.09.00817889651
39
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 2005;33:W363-7. 10.1093/nar/gki48115980490PMC1160241
40
Schaap-Johansen AL, Vujović M, Borch A, Hadrup SR, Marcatili P. T cell epitope prediction and its application to immunotherapy. Front Immunol 2021;12:712488. 10.3389/fimmu.2021.71248834603286PMC8479193
41
Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 2002;169:10-4. 10.4049/jimmunol.169.1.1012077222
42
Kolla HB, Tirumalasetty C, Sreerama K, Ayyagari VS. An immunoinformatics approach for the design of a multi-epitope vaccine targeting super antigen TSST-1 of Staphylococcus aureus. J Genet Eng Biotechnol 2021;19:69. 10.1186/s43141-021-00160-z33974183PMC8112219
43
Nascimento IP, Leite LCC. Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res 2012;45:1102-11. 10.1590/S0100-879X201200750014222948379PMC3854212
44
Tong JC, Ren EC. Immunoinformatics: current trends and future directions. Drug Discov Today 2009;14:684-9. 10.1016/j.drudis.2009.04.00119379830PMC7108239
45
Fowler VG, Allen KB, Moreira ED, Moustafa M, Isgro F, Boucher HW, et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA 2013;309:1368-78. 10.1001/jama.2013.301023549582
46
Tsai CM, Caldera JR, Hajam IA, Chiang AWT, Tsai CH, Li H, et al. Non-protective immune imprint underlies failure of Staphylococcus aureus IsdB vaccine. Cell Host Microbe 2022;30:1163-72. 10.1016/j.chom.2022.06.00635803276
47
Marchetti M, De Bei O, Bettati S, Campanini B, Kovachka S, Gianquinto E, et al. Iron metabolism at the interface between host and pathogen: From nutritional immunity to antibacterial development. Int J Mol Sci 2020;21:2145. 10.3390/ijms2106214532245010PMC7139808
48
Schmaler M, Jann NJ, Ferracin F, Landolt LZ, Biswas L, Götz F, et al. Lipoproteins in Staphylococcus aureus mediate inflammation by TLR2 and iron-dependent growth in vivo. J Immunol 2009;182:7110-8. 10.4049/jimmunol.080429219454708
Information
  • Publisher :The Korean Society for Microbiology and The Korean Society of Virology
  • Publisher(Ko) :대한미생물학회‧대한바이러스학회
  • Journal Title :JOURNAL OF BACTERIOLOGY AND VIROLOGY
  • Volume : 52
  • No :4
  • Pages :170-183
  • Received Date : 2022-12-26
  • Revised Date : 2022-12-28
  • Accepted Date : 2022-12-29