All Issue

2020 Vol.50, Issue 4

Review Article

31 December 2020. pp. 203-217
Abstract
References
1

Chaw L, Chien LC, Wong J, Takahashi K, Koh D, Lin RT. Global trends and gaps in research related to latent tuberculosis infection. BMC Public Health 2020;20:352.

10.1186/s12889-020-8419-032183753PMC7079542
2

Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, Murray M, et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med 2017:S2213-2600(17)30079-6.

3

Herrera M, Vera C, Keynan Y, Rueda ZV. Gaps in Study Design for Immune Parameter Research for Latent Tuberculosis Infection: A Systematic Review. J Immunol Res 2020;2020:8074183.

10.1155/2020/807418332377537PMC7191376
4

Yong YK, Tan HY, Saeidi A, Wong WF, Vignesh R, Velu V, et al. Immune Biomarkers for Diagnosis and Treatment Monitoring of Tuberculosis: Current Developments and Future Prospects. Front Microbiol 2019;10:2789.

10.3389/fmicb.2019.0278931921004PMC6930807
5

Barry CE 3rd, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 2009;7:845-55.

10.1038/nrmicro223619855401PMC4144869
6

Sommer F, Torraca V, Meijer AH. Chemokine Receptors and Phagocyte Biology in Zebrafish. Front Immunol 2020;11:325.

10.3389/fimmu.2020.0032532161595PMC7053378
7

Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev 2018;282:121-50.

10.1111/imr.1263429431212PMC5813811
8

Domingo-Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol Spectr 2016;4:TBTB2-0018-2016.

10.1128/microbiolspec.TBTB2-0018-201627763255PMC5205539
9

Monin L, Khader SA. Chemokines in tuberculosis: the good, the bad and the ugly. Semin Immunol 2014;26:552-8.

10.1016/j.smim.2014.09.00425444549PMC4314384
10

Torraca V, Tulotta C, Snaar-Jagalska BE, Meijer AH. The chemokine receptor CXCR4 promotes granuloma formation by sustaining a mycobacteria-induced angiogenesis programme. Sci Rep 2017;7:45061.

10.1038/srep4506128332618PMC5362882
11

Cooper AM, Mayer-Barber KD, Sher A. Role of innate cytokines in mycobacterial infection. Mucosal Immunol 2011;4:252-60.

10.1038/mi.2011.1321430655PMC3294290
12

Daley CL, Caminero JA. Management of multidrug resistant tuberculosis. Semin Respir Crit Care Med 2013;34:44-59.

10.1055/s-0032-133354623460005
13

de Martino M, Lodi L, Galli L, Chiappini E. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front Pediatr 2019;7:350.

10.3389/fped.2019.0035031508399PMC6718705
14

Bruyn ED, Wilkinson RJ. The Immune Interaction between HIV-1 Infection and Mycobacterium tuberculosis. Microbiol Spectr 2016;4:TBTB2-0012-2016.

10.1128/microbiolspec.TBTB2-0012-201628084192
15

Shim D, Kim H, Shin SJ. Mycobacterium tuberculosis Infection-Driven Foamy Macrophages and Their Implications in Tuberculosis Control as Targets for Host-Directed Therapy. Front Immunol 2020;11:910.

10.3389/fimmu.2020.0091032477367PMC7235167
16

Sharan R, Bucsan AN, Ganatra S, Paiardini M, Mohan M, Mehra S, et al. Chronic Immune Activation in TB/HIV Co-infection. Trends Microbiol 2020;28:619-32.

10.1016/j.tim.2020.03.01532417227
17

Shankar EM, Vignesh R, Ellegård R, Barathan M, Chong YK, Bador MK, et al. HIV-Mycobacterium tuberculosis co-infection: a ’danger-couple model’ of disease pathogenesis. Pathog Dis 2014;70:110-8.

10.1111/2049-632X.1210824214523
18

Lai RPJ, Meintjes G, Wilkinson RJ. HIV-1 tuberculosis-associated immune reconstitution inflammatory syndrome. Semin Immunopathol 2016;38:185-98.

10.1007/s00281-015-0532-226423994PMC4779131
19

Hunter RL. Tuberculosis as a three-act play: A new paradigm for the pathogenesis of pulmonary tuberculosis. Tuberculosis (Edinb) 2016;97:8-17.

10.1016/j.tube.2015.11.01026980490PMC4795183
20

Roach DR, Bean AGD, Demangel C, France MP, Briscoe H, Britton WJ. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol 2002;168:4620-7.

10.4049/jimmunol.168.9.462011971010
21

Turner RD, Chiu C, Churchyard GJ, Esmail H, Lewinsohn DM, Gandhi NR, et al. Tuberculosis Infectiousness and Host Susceptibility. J Infect Dis 2017;216:S636-S43.

10.1093/infdis/jix36129112746PMC5853924
22

Wang MG, Luo L, Zhang Y, Liu X, Liu L, He JQ. Treatment outcomes of tuberculous meningitis in adults: a systematic review and meta-analysis. BMC Pulm Med 2019;19:200.

10.1186/s12890-019-0966-831694599PMC6833188
23

Zhai K, Lu Y, Shi HZ. Tuberculous pleural effusion. J Thorac Dis 2016;8:E486-94.

10.21037/jtd.2016.05.8727499981PMC4958858
24

Cho JK, Choi YM, Lee SS, Park HK, Cha RR, Kim WS, et al. Clinical features and outcomes of abdominal tuberculosis in southeastern Korea: 12 years of experience. BMC Infect Dis 2018;18:699.

10.1186/s12879-018-3635-230587154PMC6307147
25

Zajaczkowski T. Genitourinary tuberculosis: historical and basic science review: past and present. Cent European J Urol 2012;65:182-7.

10.5173/ceju.2012.04.art124578959PMC3921817
26

Tong ZH, Shi HZ. Subpopulations of helper T lymphocytes in tuberculous pleurisy. Tuberculosis (Edinb) 2013;93:279-84.

10.1016/j.tube.2013.02.01423477939
27

Guerreiro R, Santos-Costa Q, Azevedo-Pereira JM. [The chemokines and their receptors: characteristics and physiological functions]. Acta Med Port 2011;24 Suppl 4:967-76.

28

Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 2017;17:559-72.

10.1038/nri.2017.4928555670PMC5731833
29

Marchese A. Endocytic trafficking of chemokine receptors. Curr Opin Cell Biol 2014;27:72-7.

10.1016/j.ceb.2013.11.01124680433PMC4268779
30

Reyes ME, de La Fuente M, Hermoso M, Ili CG, Brebi P. Role of CC Chemokines Subfamily in the Platinum Drugs Resistance Promotion in Cancer. Front Immunol 2020;11:901.

10.3389/fimmu.2020.0090132499779PMC7243460
31

Tripathi DK, Poluri KM. Molecular insights into kinase mediated signaling pathways of chemokines and their cognate G protein coupled receptors. Front Biosci (Landmark Ed) 2020;25:1361-85

10.2741/4860
32

Hembruff SL, Cheng N. Chemokine signaling in cancer: Implications on the tumor microenvironment and therapeutic targeting. Cancer Ther 2009;7:254-67.

33

Saunders BM, Cooper AM. Restraining mycobacteria: role of granulomas in mycobacterial infections. Immunol Cell Biol 2000;78:334-41.

10.1046/j.1440-1711.2000.00933.x10947857
34

Orme IM, Cooper AM. Cytokine/chemokine cascades in immunity to tuberculosis. Immunol Today 1999;20:307-12.

10.1016/S0167-5699(98)01438-8
35

Wickremasinghe MI, Thomas LH, Friedland JS. Pulmonary epithelial cells are a source of IL-8 in the response to Mycobacterium tuberculosis: essential role of IL-1 from infected monocytes in a NF-kappa B-dependent network. J Immunol 1999;163:3936-47.

36

O’Kane CM, Boyle JJ, Horncastle DE, Elkington PT, Friedland JS. Monocyte-dependent fibroblast CXCL8 secretion occurs in tuberculosis and limits survival of mycobacteria within macrophages. J Immunol 2007;178:3767-76.

10.4049/jimmunol.178.6.376717339475
37

Etna MP, Giacomini E, Severa M, Coccia EM. Pro- and anti-inflammatory cytokines in tuberculosis: a two-edged sword in TB pathogenesis. Semin Immunol 2014;26:543-51

10.1016/j.smim.2014.09.01125453229
38

Orme IM, Henao-Tamayo MI. Trying to See the Forest through the Trees: Deciphering the Nature of Memory Immunity to Mycobacterium tuberculosis. Front Immunol 2018;9:461

10.3389/fimmu.2018.0046129568298PMC5852080
39

Kumar NP, Moideen K, Nancy A, Viswanathan V, Shruthi BS, Sivakumar S, et al. Plasma chemokines are biomarkers of disease severity, higher bacterial burden and delayed sputum culture conversion in pulmonary tuberculosis. Sci Rep 2019;9:18217.

10.1038/s41598-019-54803-w31796883PMC6890773
40

Groom JR, Luster AD. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 2011;89:207-15.

10.1038/icb.2010.15821221121PMC3863330
41

Qiu X, Xiong T, Su X, Qu Y, Ge L, Yue Y, et al. Accumulate evidence for IP-10 in diagnosing pulmonary tuberculosis. BMC Infect Dis 2019;19:924.

10.1186/s12879-019-4466-531666025PMC6822474
42

Qiu X, Tang Y, Yue Y, Zeng Y, Li W, Qu Y, et al. Accuracy of interferon-gamma-induced protein 10 for diagnosing latent tuberculosis infection: a systematic review and meta-analysis. Clin Microbiol Infect 2019;25:667-72.

10.1016/j.cmi.2018.12.00630553864
43

Wawrocki S, Seweryn M, Kielnierowski G, Rudnicka W, Wlodarczyk M, Druszczynska M. IL-18/IL-37/IP-10 signalling complex as a potential biomarker for discriminating active and latent TB. PLoS One 2019;14:e0225556.

10.1371/journal.pone.022555631821340PMC6903724
44

Palmer MV, Thacker TC, Rabideau MM, Jones GJ, Kanipe C, Vordermeier HM, et al. Biomarkers of cell-mediated immunity to bovine tuberculosis. Vet Immunol Immunopathol 2020;220:109988.

10.1016/j.vetimm.2019.10998831846797
45

Mamishi S, Mahmoudi S, Banar M, Hosseinpour Sadeghi R, Marjani M, Pourakbari B. Diagnostic accuracy of interferon (IFN)-gamma inducible protein 10 (IP-10) as a biomarker for the discrimination of active and latent tuberculosis. Mol Biol Rep 2019;46:6263-9.

10.1007/s11033-019-05067-031564016
46

Zhang W. IP-10 for the diagnosis of tuberculosis in children: Protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2019;98:e15977.

10.1097/MD.000000000001597731169732PMC6571383
47

Sun T, Wu B, Wang J, Yuan T, Huang H, Xu D, et al. Evaluation of the Diagnostic Efficacy of Monocyte Parameters and MCP-1 to Distinguishing Active Tuberculosis from Latent Tuberculosis. Clin Lab 2019;65.

10.7754/Clin.Lab.2018.181115
48

Kathamuthu GR, Sridhar R, Baskaran D, Babu S. Low body mass index has minimal impact on plasma levels of cytokines and chemokines in tuberculous lymphadenitis. J Clin Tuberc Other Mycobact Dis 2020;20:100163.

10.1016/j.jctube.2020.10016332420460PMC7218292
49

de Oyarzabal E, García-García L, Rangel-Escareño C, Ferreyra-Reyes L, Orozco L, Herrera MT, et al. Expression of USP18 and IL2RA Is Increased in Individuals Receiving Latent Tuberculosis Treatment with Isoniazid. J Immunol Res 2019;2019:1297131.

10.1155/2019/129713131886294PMC6925913
50

Sheng YF, Qi Q. Association of chemotactic chemokine ligand 5 rs2107538 polymorphism with tuberculosis susceptibility: A meta-analysis. Innate Immun 2020;26:358-63.

10.1177/175342591989166231874580
51

Zhang M, Li D, Hu ZD, Huang YL. The diagnostic utility of pleural markers for tuberculosis pleural effusion. Ann Transl Med 2020;8:607.

10.21037/atm.2019.09.11032566633PMC7290547
52

Jiang J, Cao Z, Qu J, Liu H, Han H, Cheng X. PD-1-expressing MAIT cells from patients with tuberculosis exhibit elevated production of CXCL13. Scand J Immunol 2020;91:e12858.

10.1111/sji.12858
53

Rao DA. T Cells That Help B Cells in Chronically Inflamed Tissues. Front Immunol 2018;9:1924.

10.3389/fimmu.2018.0192430190721PMC6115497
54

Crotty S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity 2019;50:1132-48.

10.1016/j.immuni.2019.04.01131117010PMC6532429
55

Kim HJ, Ryu S, Choi SH, Seo H, Yoo SS, Lee SY, et al. Comparison of biochemical parameters and chemokine levels in pleural fluid between patients with anergic and non-anergic tuberculous pleural effusion. Tuberculosis (Edinb) 2020;123:101940.

10.1016/j.tube.2020.10194032452425
56

Kwon JS, Park JH, Kim JY, Cha HH, Kim MJ, Chong YP, et al. Diagnostic Usefulness of Cytokine and Chemokine Levels in the Cerebrospinal Fluid of Patients with Suspected Tuberculous Meningitis. Am J Trop Med Hyg 2019;101:343-9.

10.4269/ajtmh.18-094731264559PMC6685561
57

Hoft SG, Sallin MA, Kauffman KD, Sakai S, Ganusov VV, Barber DL. The Rate of CD4 T Cell Entry into the Lungs during Mycobacterium tuberculosis Infection Is Determined by Partial and Opposing Effects of Multiple Chemokine Receptors. Infect Immun 2019;87:e00841-18.

10.1128/IAI.00491-1931434760PMC6704601
58

Sakai S, Kauffman KD, Schenkel JM, McBerry CC, Mayer-Barber KD, Masopust D, et al. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J Immunol 2014;192:2965-9.

10.4049/jimmunol.140001924591367PMC4010124
59

Ardain A, Domingo-Gonzalez R, Das S, Kazer SW, Howard NC, Singh A, et al. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature 2019;570:528-32.

10.1038/s41586-019-1276-231168092PMC6626542
60

Matsuzaki G, Yamasaki M, Tamura T, Umemura M. Dispensable role of chemokine receptors in migration of mycobacterial antigen-specific CD4(+) T cells into Mycobacterium-infected lung. Immunobiology 2019;224:440-48.

10.1016/j.imbio.2019.01.00630795859
61

Valdez-Miramontes CE, Trejo Martínez LA, Torres-Juárez F, Rodríguez Carlos A, Marin-Luévano SP, de Haro-Acosta JP, et al. Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with M. tuberculosis. Clin Exp Immunol 2020;199:230-43.

10.1111/cei.1338831631328
62

Rajamanickam A, Munisankar S, Bhootra Y, Dolla CK, Nutman TB, Babu S. Coexistent Helminth Infection-Mediated Modulation of Chemokine Responses in Latent Tuberculosis. J Immunol 2019;202:1494-500.

10.4049/jimmunol.180119030651341PMC6382527
63

Choi UY, Kang JS, Hwang YS, Kim YJ. Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases. Exp Mol Med 2015;47:e144.

10.1038/emm.2014.11025744296PMC4351405
64

Leisching G, Ali A, Cole V, Baker B. 2’-5’-Oligoadenylate synthetase-like protein inhibits intracellular M. tuberculosis replication and promotes proinflammatory cytokine secretion. Mol Immunol 2020;118:73-8.

10.1016/j.molimm.2019.12.00431855809
65

Leisching G, Cole V, Ali AT, Baker B. OAS1, OAS2 and OAS3 restrict intracellular M. tb replication and enhance cytokine secretion. Int J Infect Dis 2019;80S:S77-S84.

10.1016/j.ijid.2019.02.02930822544
66

Refai A, Gritli S, Barbouche MR, Essafi M. Mycobacterium tuberculosis Virulent Factor ESAT-6 Drives Macrophage Differentiation Toward the Pro-inflammatory M1 Phenotype and Subsequently Switches It to the Anti-inflammatory M2 Phenotype. Front Cell Infect Microbiol 2018;8:327.

10.3389/fcimb.2018.0032730283745PMC6157333
67

Li F, Luo J, Xu H, Wang Y, Jiang W, Chang K, et al. Early secreted antigenic target 6-kDa from Mycobacterium tuberculosis enhanced the protective innate immunity of macrophages partially via HIF1alpha. Biochem Biophys Res Commun 2020;522:26-32.

10.1016/j.bbrc.2019.11.04531735338
68

Kviatcovsky D, Rivadeneyra L, Balboa L, Yokobori N, López B, Ritacco V, et al. Mycobacterium tuberculosis Multidrug-Resistant Strain M Induces Low IL-8 and Inhibits TNF-alpha Secretion by Bronchial Epithelial Cells Altering Neutrophil Effector Functions. Mediators Inflamm 2017;2017:2810606.

10.1155/2017/281060628852268PMC5568625
69

Shanmugasundaram U, Bucsan AN, Ganatra SR, Ibegbu C, Quezada M, Blair RV, et al. Pulmonary Mycobacterium tuberculosis control associates with CXCR3- and CCR6-expressing antigen-specific Th1 and Th17 cell recruitment. JCI Insight 2020; 5:e137858.

10.1172/jci.insight.13785832554933PMC7453885
70

Gupta A, Saqib M, Singh B, Pal L, Nishikanta A, Bhaskar S. Mycobacterium indicus pranii Induced Memory T-Cells in Lung Airways Are Sentinels for Improved Protection Against M.tb Infection. Front Immunol 2019;10:2359.

10.3389/fimmu.2019.0235931681272PMC6813244
71

Arnold IC, Zhang X, Artola-Boran M, Fallegger A, Sander P, Johansen P, et al. BATF3-dependent dendritic cells drive both effector and regulatory T-cell responses in bacterially infected tissues. PLoS Pathog 2019;15:e1007866.

10.1371/journal.ppat.100786631188899PMC6590837
72

Pydi SS, Ghousunnissa S, Devalraju KP, Ramaseri SS, Gaddam R, Auzumeedi SK, et al. Down regulation of RANTES in pleural site is associated with inhibition of antigen specific response in tuberculosis. Tuberculosis (Edinb) 2019;116S:S123-S30.

10.1016/j.tube.2019.04.02031103419
73

Yu S, Shen J, Lao S, Yang B, Wu C. Distinct functions of CXCR3(+) and CCR4(+)CD4(+) T-cells accumulated in human tuberculosis pleural fluid. Int J Tuberc Lung Dis 2018;22:1514-22.

10.5588/ijtld.18.017230606326
74

Goenka A, Prise IE, Connolly E, Fernandez-Soto P, Morgan D, Cavet JS, et al. Infant Alveolar Macrophages Are Unable to Effectively Contain Mycobacterium tuberculosis. Front Immunol 2020;11:486.

10.3389/fimmu.2020.0048632265931PMC7107672
75

Hertz D, Dibbern J, Eggers L, von Borstel L, Schneider BE. Increased male susceptibility to Mycobacterium tuberculosis infection is associated with smaller B cell follicles in the lungs. Sci Rep 2020;10:5142.

10.1038/s41598-020-61503-332198367PMC7083901
76

Waghmare PJ, Lende T, Goswami K, Gupta A, Gupta A, Gangane N, et al. Immunological host responses as surveillance and prognostic markers in tubercular infections. Int J Mycobacteriol 2019;8:190-5.

77

Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J 3rd, Faé KC, et al. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J Clin Invest 2014;124:1268-82.

10.1172/JCI7203024509076PMC3934185
78

Kim TS, Jin YB, Kim YS, Kim S, Kim JK, Lee HM, et al. SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions. Autophagy 2019;15:1356-75.

10.1080/15548627.2019.158274330774023PMC6628940
79

Gopalakrishnan A, Dietzold J, Verma S, Bhagavathula M, Salgame P. Toll-like Receptor 2 Prevents Neutrophil-Driven Immunopathology during Infection with Mycobacterium tuberculosis by Curtailing CXCL5 Production. Infect Immun 2019; 87:e00760-18.

10.1128/IAI.00760-1830559223PMC6386542
80

Ashhurst AS, Flórido M, Lin LCW, Quan D, Armitage E, Stifter SA, et al. CXCR6-Deficiency Improves the Control of Pulmonary Mycobacterium tuberculosis and Influenza Infection Independent of T-Lymphocyte Recruitment to the Lungs. Front Immunol 2019;10:339.

10.3389/fimmu.2019.0033930899256PMC6416161
81

Scott NR, Swanson RV, Al-Hammadi N, Domingo-Gonzalez R, Rangel-Moreno J, Kriel BA, et al. S100A8/A9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis. J Clin Invest 2020;130:3098-112.

10.1172/JCI13054632134742PMC7259997
82

Zhang Y, Li S, Liu Q, Long R, Feng J, Qin H, et al. Mycobacterium tuberculosis Heat-Shock Protein 16.3 Induces Macrophage M2 Polarization Through CCRL2/CX3CR1. Inflammation 2020;43:487-506.

10.1007/s10753-019-01132-931748849PMC7170987
83

Lugo-Villarino G, Troegeler A, Balboa L, Lastrucci C, Duval C, Mercier I, et al. The C-Type Lectin Receptor DC-SIGN Has an Anti-Inflammatory Role in Human M(IL-4) Macrophages in Response to Mycobacterium tuberculosis. Front Immunol 2018;9:1123.

10.3389/fimmu.2018.0112329946317PMC6006465
84

Schutz C, Barr D, Andrade BB, Shey M, Ward A, Janssen S, et al. Clinical, microbiologic, and immunologic determinants of mortality in hospitalized patients with HIV-associated tuberculosis: A prospective cohort study. PLoS Med 2019;16:e1002840.

10.1371/journal.pmed.100284031276515PMC6611568
85

Kathamuthu GR, Munisankar S, Banurekha VV, Nair D, Sridhar R, Babu S. Filarial Coinfection Is Associated With Higher Bacterial Burdens and Altered Plasma Cytokine and Chemokine Responses in Tuberculous Lymphadenitis. Front Immunol 2020;11:706.

10.3389/fimmu.2020.0070632373129PMC7186434
Information
  • Publisher :The Korean Society for Microbiology and The Korean Society of Virology
  • Publisher(Ko) :대한미생물학회‧대한바이러스학회
  • Journal Title :JOURNAL OF BACTERIOLOGY AND VIROLOGY
  • Volume : 50
  • No :4
  • Pages :203-217
  • Received Date : 2020-11-18
  • Revised Date : 2020-12-10
  • Accepted Date : 2020-12-14