All Issue

2023 Vol.53, Issue 1 Preview Page

Original Article

30 June 2023. pp. 29-42
Baggen J, Thibaut HJ, Strating JRPM, van Kuppeveld FJM. The life cycle of non-polio enteroviruses and how to target it. Nat Rev Microbiol 2018;16:368-81. 10.1038/s41579-018-0005-429626210
Cassidy H, Poelman R, Knoester M, Van Leer-Buter CC, Niesters HGM. Enterovirus D68 - The New Polio? Front Microbiol 2018;9:2677. 10.3389/fmicb.2018.0267730483226PMC6243117
Suresh S, Forgie S, Robinson J. Non-polio Enterovirus detection with acute flaccid paralysis: A systematic review. J Med Virol 2018;90:3-7. 10.1002/jmv.2493328857219
Choutet P, Besnier JM. Acute viral meningitis. Rev Prat 1994;44:2172-6.
Pons-Salort M, Parker EP, Grassly NC. The epidemiology of non-polio enteroviruses: recent advances and outstanding questions. Curr Opin Infect Dis 2015;28:479-87. 10.1097/QCO.000000000000018726203854PMC6624138
Chen BS, Lee HC, Lee KM, Gong YN, Shih SR. Enterovirus and Encephalitis. Front Microbiol 2020;11:261. 10.3389/fmicb.2020.0026132153545PMC7044131
Melnick JL, Shaw EW, Curnen EC. A virus isolated from patients diagnosed as non-paralytic poliomyelitis or aseptic meningitis. Proc Soc Exp Bio Med 1949;71:344-9. 10.3181/00379727-71-1718618136475
Melnick JL. Portraits of viruses: the picornaviruses. Intervirology 1983;20:61-100. 10.1159/0001493766313547
Bendig JW, Fleming DM. Epidemiological, virological, and clinical features of an epidemic of hand, foot, and mouth disease in England and Wales. Commun Dis Rep CDR rev 1996;6:R81-6.
Chang LY, Huang YC, Lin TY. Fulminant neurogenic pulmonary oedema with hand, foot, and mouth disease. Lancet 1998;352:367-8. 10.1016/S0140-6736(98)24031-19717926
Sainani GS, Dekate MP, Rao CP. Heart disease caused by Coxsackie virus B infection. Br Heart J 1975;37:819-23. 10.1136/hrt.37.8.819127598PMC482880
Hober D, Sauter P. Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat Rev Endocrinol 2010;6:279-89. 10.1038/nrendo.2010.2720351698
Turner RB. Epidemiology, pathogenesis, and treatment of the common cold. Ann Allergy Asthma Immunol 1997; 78:531-9; quiz 9-40. 10.1016/S1081-1206(10)63213-99207716
Gern JE, Galagan DM, Jarjour NN, Dick EC, Busse WW. Detection of rhinovirus RNA in lower airway cells during experimentally induced infection. Am J Respir Crit Care Med 1997;155:1159-61. 10.1164/ajrccm.155.3.91170039117003
Jartti T, Gern JE. Rhinovirus-associated wheeze during infancy and asthma development. Curr Respir Med Rev 2011;7:160-6. 10.2174/15733981179558942323066381PMC3469323
Kaiser L, Aubert JD, Pache JC, Deffernez C, Rochat T, Garbino J, et al. Chronic rhinoviral infection in lung transplant recipients. Am J Respir Crit Care Med 2006;174:1392-9. 10.1164/rccm.200604-489OC17008640
Corne JM, Marshall C, Smith S, Schreiber J, Sanderson G, Holgate ST, et al. Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinal cohort study. Lancet 2002;359:831-4. 10.1016/S0140-6736(02)07953-911897281
Johnston SL, Pattemore PK, Sanderson G, Smith S, Lampe F, Josephs L, et al. Community study of role of viral infections in exacerbations of asthma in 9-11 year old children. BMJ 1995;310:1225-9. 10.1136/bmj.310.6989.12257767192PMC2549614
Papi A, Bellettato CM, Braccioni F, Romagnoli M, Casolari P, Caramori G, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med 2006;173:1114-21. 10.1164/rccm.200506-859OC16484677
Gavala ML, Bertics PJ, Gern JE. Rhinoviruses, allergic inflammation, and asthma. Immunol Rev 2011;242:69-90. 10.1111/j.1600-065X.2011.01031.x21682739PMC3119863
Arruda E, Boyle TR, Winther B, Pevear DC, Gwaltney JM Jr, Hayden FG. Localization of human rhinovirus replication in the upper respiratory tract by in situ hybridization. J Infect Dis 1995;171:1329-33. 10.1093/infdis/171.5.13297751712
Winther B, Gwaltney JM, Hendley JO. Respiratory virus infection of monolayer cultures of human nasal epithelial cells. Am Rev Respir Dis 1990;141:839-45. 10.1164/ajrccm/141.4_Pt_1.8392158258
Sajjan U, Wang Q, Zhao Y, Gruenert DC, Hershenson MB. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am J Respir Crit Care Med 2008;178:1271-81. 10.1164/rccm.200801-136OC18787220PMC2599868
Peters CE, Carette JE. Return of the Neurotropic Enteroviruses: Co-Opting Cellular Pathways for Infection. Viruses 2021;13:166. 10.3390/v1302016633499355PMC7911124
Wang S, Wang W, Hao C, Yunjia Y, Qin L, He M, et al. Antiviral activity against enterovirus 71 of sulfated rhamnan isolated from the green alga Monostroma latissimum. Carbohydr Polym 2018;200:43-53. 10.1016/j.carbpol.2018.07.06730177184
Plevka P, Perera R, Cardosa J, Kuhn RJ, Rossmann MG. Crystal structure of human enterovirus 71. Science 2012;336:1274. 10.1126/science.121871322383808PMC3448362
Pettersson RF, Ambros V, Baltimore D. Identification of a protein linked to nascent poliovirus RNA and to the polyuridylic acid of negative-strand RNA. J Virol 1978;27:357-65. 10.1128/jvi.27.2.357-365.1978211265PMC354174
Yuan J, Shen L, Wu J, Zou X, Gu J, Chen J, et al. Enterovirus A71 Proteins: Structure and Function. Front Microbiol 2018;9:286. 10.3389/fmicb.2018.0028629515559PMC5826392
Dobrikova EY, Grisham RN, Kaiser C, Lin J, Gromeier M. Competitive translation efficiency at the picornavirus type 1 internal ribosome entry site facilitated by viral cis and trans factors. J Virol 2006;80:3310-21. 10.1128/JVI.80.7.3310-3321.200616537598PMC1440366
Tu Z, Chapman NM, Hufnagel G, Tracy S, Romero JR, Barry WH, et al. The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5' nontranslated region. J virol 1995;69:4607-18. 10.1128/jvi.69.8.4607-4618.19957609025PMC189260
Gromeier M, Bossert B, Arita M, Nomoto A, Wimmer E. Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virol 1999;73:958-64. 10.1128/JVI.73.2.958-964.19999882296PMC103915
Zell R, Sidigi K, Henke A, Schmidt-Brauns J, Hoey E, Martin S, et al. Functional features of the bovine enterovirus 5'-non-translated region. J Gen Virol 1999;80:2299-309. 10.1099/0022-1317-80-9-229910501480
Dunn JJ, Chapman NM, Tracy S, Romero JR. Genomic determinants of cardiovirulence in coxsackievirus B3 clinical isolates: localization to the 5' nontranslated region. J Virol 2000;74:4787-94. 10.1128/jvi.74.10.4787-4794.200010775617PMC112001
Brown DM, Cornell CT, Tran GP, Nguyen JH, Semler BL. An authentic 3' noncoding region is necessary for efficient poliovirus replication. J Virol 2005;79:11962-73. 10.1128/JVI.79.18.11962-11973.200516140772PMC1212627
Lin JY, Chen TC, Weng KF, Chang SC, Chen LL, Shih SR. Viral and host proteins involved in picornavirus life cycle. J Biomed Sci 2009;16:103. 10.1186/1423-0127-16-10319925687PMC2785775
Coyne CB, Bergelson JM. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 2006;124:119-31. 10.1016/j.cell.2005.10.03516413486
Bergelson JM, Chan M, Solomon KR, St John NF, Lin H, Finberg RW. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc Natl Acad Sci U S A 1994;91:6245-8. 10.1073/pnas.91.13.62457517044PMC44175
Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu H. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med 2009;15:794-7. 10.1038/nm.196119543284
Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med 2009;15:798-801. 10.1038/nm.199219543282
Jacobs SE, Lamson DM, St George K, Walsh TJ. Human rhinoviruses. Clin Microbiol Rev 2013;26:135-62. 10.1128/CMR.00077-1223297263PMC3553670
Blaas D, Fuchs R. Mechanism of human rhinovirus infections. Mol Cell Pediatr 2016;3:21. 10.1186/s40348-016-0049-327251607PMC4889530
Bochkov YA, Watters K, Ashraf S, Griggs TF, Devries MK, Jackson DJ, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A 2015;112:5485-90. 10.1073/pnas.142117811225848009PMC4418890
van der Schaar HM, Dorobantu CM, Albulescu L, Strating JRPM, van Kuppeveld FJM. Fat(al) attraction: Picornaviruses Usurp Lipid Transfer at Membrane Contact Sites to Create Replication Organelles. Trends Microbiol 2016;24:535-46. 10.1016/j.tim.2016.02.01727020598PMC7126954
Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 2010;10:778-90. 10.1016/S1473-3099(10)70194-820961813
Lalani S, Poh CL. Flavonoids as Antiviral Agents for Enterovirus A71 (EV-A71). Viruses 2020;12:184. 10.3390/v1202018432041232PMC7077323
Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH, Jaremko M. Antiviral activities of flavonoids. Biomed Pharmacother 2021;140:111596. 10.1016/j.biopha.2021.11159634126315PMC8192980
Castañeda-Ovando A, de Lourdes Pacheco-Hernández M, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA. Chemical studies of anthocyanins: A review. Food chemistry 2009;113:859-71. 10.1016/j.foodchem.2008.09.001
Das S, Rosazza JP. Microbial and enzymatic transformations of flavonoids. J Nat Prod 2006;69:499-508. 10.1021/np050465916562863
Peluso MR. Flavonoids attenuate cardiovascular disease, inhibit phosphodiesterase, and modulate lipid homeostasis in adipose tissue and liver. Exp Biol Med 2006;231:1287-99. 10.1177/15353702062310080216946397
Panthong A, Kanjanapothi D, Tuntiwachwuttikul P, Pancharoen O, Reutrakul V. Antiinflammatory activity of flavonoids. Phytomedicine 1994;1:141-4. 10.1016/S0944-7113(11)80032-223195887
Helenius A. Virus Entry: Looking Back and Moving Forward. J Mol Biol 2018;430:1853-62. 10.1016/j.jmb.2018.03.03429709571PMC7094621
Roschek B Jr, Fink RC, McMichael MD, Li D, Alberte RS. Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry 2009;70:1255-61. 10.1016/j.phytochem.2009.06.00319682714
Wang MJ, Yang CH, Jin Y, Wan CB, Qian WH, Xing F, et al. Baicalin Inhibits Coxsackievirus B3 Replication by Reducing Cellular Lipid Synthesis. Am J Chin Med 2020;48:143-60. 10.1142/S0192415X2050008131903780
Song JH, Kwon BE, Jang H, Kang H, Cho S, Park K, et al. Antiviral Activity of Chrysin Derivatives against Coxsackievirus B3 in vitro and in vivo. Biomol Ther 2015;23:465-70. 10.4062/biomolther.2015.09526336587PMC4556207
Wu S, Wang HQ, Guo TT, Li YH. Luteolin inhibits CVB3 replication through inhibiting inflammation. J Asian Nat Prod Res 2020;22:762-73. 10.1080/10286020.2019.164232931321999
Xu L, Su W, Jin J, Chen J, Li X, Zhang X, et al. Identification of luteolin as enterovirus 71 and coxsackievirus A16 inhibitors through reporter viruses and cell viability-based screening. Viruses 2014;6:2778-95. 10.3390/v607277825036464PMC4113793
Wang CY, Huang SC, Lai ZR, Ho YL, Jou YJ, Kung SH, et al. Eupafolin and Ethyl Acetate Fraction of Kalanchoe gracilis Stem Extract Show Potent Antiviral Activities against Enterovirus 71 and Coxsackievirus A16. Evid Based Complement Alternat Med 2013;2013:591354. 10.1155/2013/59135424078828PMC3775429
Huttunen P, Hyypiä T, Vihinen P, Nissinen L, Heino J. Echovirus 1 infection induces both stress- and growth-activated mitogen-activated protein kinase pathways and regulates the transcription of cellular immediate-early genes. Virology 1998;250:85-93. 10.1006/viro.1998.93439770423
Tung WH, Sun CC, Hsieh HL, Wang SW, Horng JT, Yang CM. EV71 induces VCAM-1 expression via PDGF receptor, PI3-K/Akt, p38 MAPK, JNK and NF-kappaB in vascular smooth muscle cells. Cell Signal 2007;19:2127-37. 10.1016/j.cellsig.2007.06.00917669626
Wilsky S, Sobotta K, Wiesener N, Pilas J, Althof N, Munder T, et al. Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication. Arch Virol 2012;157:259-69. 10.1007/s00705-011-1164-z22075919
Galochkina AV, Zarubaev VV, Kiselev OI, Babkin VA, Ostroukhova LA. [ANTIVIRAL ACTIVITY OF THE DIHYDROQUERCETIN DURING THE COXSACKIEVIRUS B4 REPLICATION IN VITRO]. Vopr Virusol 2016;61:27-31. 10.18821/0507-4088-2016-61-1-27-3127145597
Choi HJ, Song HH, Lee JS, Ko HJ, Song JH. Inhibitory Effects of Norwogonin, Oroxylin A, and Mosloflavone on Enterovirus 71. Biomol Ther 2016;24:552-8. 10.4062/biomolther.2015.20027257010PMC5012882
Zhu QC, Wang Y, Liu YP, Zhang RQ, Li X, Su WH, et al. Inhibition of enterovirus 71 replication by chrysosplenetin and penduletin. Eur J Pharm Sci 2011;44:392-8. 10.1016/j.ejps.2011.08.03021914477
Wang H, Zhang D, Ge M, Li Z, Jiang J, Li Y. Formononetin inhibits enterovirus 71 replication by regulating COX- 2/PGE₂ expression. Virol J 2015;12:35. 10.1186/s12985-015-0264-x25890183PMC4351682
Lin YJ, Chang YC, Hsiao NW, Hsieh JL, Wang CY, Kung SH, et al. Fisetin and rutin as 3C protease inhibitors of enterovirus A71. J Virol Methods 2012;182:93-8. 10.1016/j.jviromet.2012.03.02022465253
Zhang W, Qiao H, Lv Y, Wang J, Chen X, Hou Y, et al. Apigenin inhibits enterovirus-71 infection by disrupting viral RNA association with trans-acting factors. PloS one 2014;9:e110429. 10.1371/journal.pone.011042925330384PMC4199717
Arango D, Morohashi K, Yilmaz A, Kuramochi K, Parihar A, Brahimaj B, et al. Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets. Proc Natl Acad Sci U S A 2013;110:E2153-62. 10.1073/pnas.130372611023697369PMC3683737
Lv X, Qiu M, Chen D, Zheng N, Jin Y, Wu Z. Apigenin inhibits enterovirus 71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. Antiviral Res 2014;109:30-41. 10.1016/j.antiviral.2014.06.00424971492
Tsai FJ, Lin CW, Lai CC, Lan YC, Lai CH, Hung CH, et al. Kaempferol inhibits enterovirus 71 replication and internal ribosome entry site (IRES) activity through FUBP and HNRP proteins. Food Chem 2011;128:312-22. 10.1016/j.foodchem.2011.03.02225212137
Ganesan S, Faris AN, Comstock AT, Wang Q, Nanua S, Hershenson MB, et al. Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Res 2012;94:258-71. 10.1016/j.antiviral.2012.03.00522465313PMC3360794
Choi HJ. In Vitro Antiviral Activity of Sakuranetin against Human Rhinovirus 3. Osong Public Health Res Perspect 2017;8:415-20. 10.24171/j.phrp.2017.8.6.0929354400PMC5749483
Song JH, Park KS, Kwon DH, Choi HJ. Anti-human rhinovirus 2 activity and mode of action of quercetin-7-glucoside from Lagerstroemia speciosa. J Med Food 2013;16:274-9. 10.1089/jmf.2012.229023566054
Desideri N, Conti C, Sestili I, Tomao P, Stein ML, Orsi N. In vitro evaluation of the anti-picornavirus activities of new synthetic flavonoids. Antiviral Chemistry and Chemotherapy 1995;6:298-306. 10.1177/095632029500600503
Choi HJ, Bae EY, Song JH, Baek SH, Kwon DH. Inhibitory effects of orobol 7-O-D-glucoside from banaba (Lagerstroemia speciosa L.) on human rhinoviruses replication. Lett Appl Microbiol 2010;51:1-5. 10.1111/j.1472-765X.2010.02845.x20497313
Bauer L, Lyoo H, van der Schaar HM, Strating JR, van Kuppeveld FJ. Direct-acting antivirals and host-targeting strategies to combat enterovirus infections. Curr Opin Virol 2017;24:1-8. 10.1016/j.coviro.2017.03.00928411509PMC7172203
Kuo RL, Shih SR. Strategies to develop antivirals against enterovirus 71. Virol J 2013;10:28. 10.1186/1743-422X-10-2823339605PMC3614426
  • Publisher :The Korean Society for Microbiology and The Korean Society of Virology
  • Publisher(Ko) :대한미생물학회‧대한바이러스학회
  • Volume : 53
  • No :1
  • Pages :29-42
  • Received Date : 2023-01-02
  • Revised Date : 2023-05-09
  • Accepted Date : 2023-05-17