All Issue

2024 Vol.54, Issue 2 Preview Page

Review Article

30 June 2024. pp. 84-93
Abstract
References
1

Principi N, Silvestri E, Esposito S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front Pharmacol. 2019;10:513.

10.3389/fphar.2019.0051331139086PMC6517696
2

Helen EW, Elena VO. Bacteriophages: Their structural organisation and function. In: Renos S, editor. Bacteriophages. IntechOpen; 2019.

3

Onsea J, Post V, Buchholz T, Schwegler H, Zeiter S, Wagemans J, et al. Bacteriophage therapy for the prevention and treatment of fracture-related infection caused by Staphylococcus aureus: a preclinical study. Microbiol Spectr. 2021;9(3):e0173621.

10.1128/spectrum.01736-2134908439PMC8672900
4

Mursalin MH, Astley R, Coburn PS, Bagaruka E, Hunt JJ, Fischetti VA, et al. Therapeutic potential of Bacillus phage lysin PlyB in ocular infections. mSphere. 2023;8(4):e0004423.

10.1128/msphere.00044-2337273201PMC10449515
5

Al-Anany AM, Hooey PB, Cook JD, Burrows LL, Martyniuk J, Hynes AP, et al. Phage therapy in the management of urinary tract infections: A comprehensive systematic review. Phage (New Rochelle). 2023;4(3):112-127.

10.1089/phage.2023.002437771568PMC10523411
6

Gao Z, Feng Y. Bacteriophage strategies for overcoming host antiviral immunity. Front Microbiol. 2023;14:1211793.

10.3389/fmicb.2023.121179337362940PMC10286901
7

Dowah ASA, Clokie MRJ. Review of the nature, diversity and structure of bacteriophage receptor binding proteins that target Gram-positive bacteria. Biophys Rev. 2018;10(2):535-542.

10.1007/s12551-017-0382-329299830PMC5899739
8

Elois MA, Silva RD, Pilati GVT, Rodríguez-Lázaro D, Fongaro G. Bacteriophages as biotechnological tools. Viruses. 2023;15(2):349.

10.3390/v1502034936851563PMC9963553
9

Yang Q, Le S, Zhu T, Wu N. Regulations of phage therapy across the world. Front Microbiol. 2023;14:1250848.

10.3389/fmicb.2023.125084837869667PMC10588630
10

The promise of phages. Nat Biotechnol. 2023;41(5):583.

10.1038/s41587-023-01807-737161019PMC10169159
11

Global Bacteriophage Market Insights. Available at https://www.skyquestt.com/report/ bacteriophage-market#:~:text=Bacteriophage%20Market%20size%20was%20valued,period%20(2023%2D2030). [accessed on 18 March 2024].

12

Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther. 2017 Aug 6;8(3):162-173.

10.4292/wjgpt.v8.i3.16228828194PMC5547374
13

Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011;1(2):111-114.

10.4161/bact.1.2.1459022334867PMC3278648
14

Oechslin F. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses. 2018;10(7):351.

10.3390/v1007035129966329PMC6070868
15

Hyman P. Phages for phage therapy: Isolation, characterization, and host range breadth. Pharmaceuticals (Basel). 2019;12(1):35.

10.3390/ph1201003530862020PMC6469166
16

Denissen J, Reyneke B, Waso-Reyneke M, Havenga B, Barnard T, Khan S, et al. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int J Hygiene Environ Health. 2022;244:114006.

10.1016/j.ijheh.2022.11400635841823
17

Bai H, Graham C. Introduction: Skin. Yale J Biol Med. 2020;93(1):1-2.

18

Wang J, Meng W, Zhang K, Wang J, Lu B, Wang R, et al. Topically applied bacteriophage to control multi-drug resistant Pseudomonas aeruginosa-infected wounds in a New Zealand rabbit model. Front Microbiol. 2022;13:1031101.

10.3389/fmicb.2022.103110136329839PMC9624279
19

Kielholz T, Rohde F, Jung N, Windbergs M. Bacteriophage-loaded functional nanofibers for treatment of P. aeruginosa and S. aureus wound infections. Sci Rep. 2023;13(1):8330.

10.1038/s41598-023-35364-537221194PMC10205809
20

Kiladze N, Chanishvili N, Shulaia T, Bendeliani Z, Zaichenko Y. Phages in Treatment of Some Deep Purulent Skin Infections. Lviv clinical bulletin. 2017;3(19):39-43.

10.25040/lkv2017.023.039
21

Waters EM, Neill DR, Kaman B, Sahota JS, Clokie MRJ, Winstanley C, et al. Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax. 2017;72(7):666-667.

10.1136/thoraxjnl-2016-20926528265031PMC5520275
22

Köhler T, Luscher A, Falconnet L, Resch G, McBride R, Mai QA, et al. Personalized aerosolised bacteriophage treatment of a chronic lung infection due to multidrug-resistant Pseudomonas aeruginosa. Nat Commun. 2023;14(1):3629.

10.1038/s41467-023-39370-z37369702PMC10300124
23

Pabary R, Singh C, Morales S, Bush A, Alshafi K, Bilton D, et al. Antipseudomonal Bacteriophage Reduces Infective Burden and Inflammatory Response in Murine Lung. Antimicrob Agents Chemother. 2016;60(2):744-751.

10.1128/AAC.01426-1526574007PMC4750668
24

Fauroux B, Hart N, Belfar S, Boulé M, Tillous-Borde I, Bonnet D, et al. Burkholderia cepacia is associated with pulmonary hypertension and increased mortality among cystic fibrosis patients. J Clin Microbiol. 2004 42(12):5537-5541.

10.1128/JCM.42.12.5537-5541.200415583278PMC535237
25

Zuppi M, Hendrickson HL, O'Sullivan JM, Vatanen T. Phages in the Gut Ecosystem. Front Cell infect microbiol. 2022;11:822562.

10.3389/fcimb.2021.82256235059329PMC8764184
26

Gutiérrez B, Domingo-Calap P. Phage therapy in gastrointestinal diseases. Microorganisms. 2020;8(9):1420.

10.3390/microorganisms809142032947790PMC7565598
27

Shuwen H, Kefeng D. Intestinal phages interact with bacteria and are involved in human diseases. Gut microbes. 2022;14(1):2113717.

10.1080/19490976.2022.211371736037202PMC9427043
28

Emencheta SC, Olovo CV, Eze OC, Kalu CF, Berebon DP, Onuigbo EB, et al. The role of bacteriophages in the gut microbiota: Implications for human health. Pharmaceutics. 2023;15(10):2416.

10.3390/pharmaceutics1510241637896176PMC10609668
30

Pradal I, Casado A, del Rio B, Rodriguez-Lucas C, Fernandez M, Alvarez MA, et al. Enterococcus faecium bacteriophage vB_EfaH_163, a new member of the herelleviridae family, reduces the mortality associated with an E. faecium vanR clinical isolate in a Galleria mellonella animal model. Viruses. 2023;15(1):179.

10.3390/v1501017936680219PMC9860891
31

Song M, Wu D, Hu Y, Luo H, Li G. Characterization of an Enterococcus faecalis bacteriophage vB_EfaM_LG1 and its synergistic effect with antibiotic. Front CellInfect Microbiol. 2021;11:698807.

10.3389/fcimb.2021.69880734336721PMC8322680
32

LaVergne S, Hamilton T, Biswas B, Kumaraswamy M, Schooley RT, Wooten D. Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection. Open forum Infect Dis. 2018;5(4):ofy064.

10.1093/ofid/ofy06429687015PMC5905571
33

Ichikawa M, Nakamoto N, Kredo-Russo S, Weinstock E, Weiner IN, Khabra E, et al. Bacteriophage therapy against pathological Klebsiella pneumoniae ameliorates the course of primary sclerosing cholangitis. Nat Commun. 2023;14(1):3261.

10.1038/s41467-023-39029-937277351PMC10241881
34

Waters EM, Neill DR, Kaman B, Sahota JS, Clokie MRJ, Winstanley C, et al. Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax. 2017;72(7):666-667.

10.1136/thoraxjnl-2016-20926528265031PMC5520275
35

Zalewska-Piątek B, Piątek R. Phage Therapy as a novel strategy in the treatment of urinary tract infections caused by E. Coli. Antibiotics (Basel). 2020;9(6):304.

10.3390/antibiotics906030432517088PMC7344395
36

Bhargava K, Nath G, Dhameja N, Kumar R, Aseri GK, Jain N. Bacteriophage therapy for Escherichia coli-induced urinary tract infection in rats. Future Microbiol. 2023;18:323-334.

10.2217/fmb-2022-010737140267
37

Møller-Olsen C, Ho SFS, Shukla RD, Feher T, Sagona AP. Engineered K1F bacteriophages kill intracellular Escherichia coli K1 in human epithelial cells. Sci Rep. 2018;8(1):17559.

10.1038/s41598-018-35859-630510202PMC6277420
38

Nikkhahi F, Soltan Dallal MM, Alimohammadi M, Rahimi Foroushani A, Rajabi Z. Fardsanei F, et al. Phage therapy: assessment of the efficacy of a bacteriophage isolated in the treatment of salmonellosis induced by Salmonella enteritidis in mice. Gastroenterol Hepatol Bed Bench. 2017;10(2):131-136.

39

Scholl D, Rogers S, Adhya S, Merril CR. Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J Virol. 2001;75(6):2509-2515.

10.1128/JVI.75.6.2509-2515.200111222673PMC115872
40

Rosner D, Clark J. Formulations for bacteriophage therapy and the potential uses of immobilization. Pharmaceuticals (Basel). 2021;14(4):359.

10.3390/ph1404035933924739PMC8069877
41

Flint R, Laucirica DR, Chan HK, Chang BJ, Stick SM, Kicic A. Stability considerations for bacteriophages in liquid formulations designed for nebulization. Cells. 2023;12(16):2057.

10.3390/cells1216205737626867PMC10453214
42

Manohar P, Ramesh N. Improved lyophilization conditions for long-term storage of bacteriophages. Sci Rep. 2019;9(1):15242.

10.1038/s41598-019-51742-431645642PMC6811570
43

Vázquez R, Díez-Martínez R, Domingo-Calap P, García P, Gutiérrez D, Muniesa M, et al. Essential topics for the regulatory consideration of phages as clinically valuable therapeutic agents: A perspective from spain. Microorganisms. 2022;10(4):717.

10.3390/microorganisms1004071735456768PMC9025261
44

Huang Y, Wang W, Zhang Z, Gu Y, Huang A, Wang J, et al. Phage products for fighting antimicrobial resistance. Microorganisms. 2022;10(7):1324.

10.3390/microorganisms1007132435889048PMC9324367
45

Soffer N, Abuladze T, Woolston J. Li M, Hanna LF, Heyse S, et al. Bacteriophages safely reduce Salmonella contamination in pet food and raw pet food ingredients. Bacteriophage. 2016;6(3):e1220347.

10.1080/21597081.2016.122034727738557PMC5056775
46

Moye ZD, Woolston J, Sulakvelidze A. Bacteriophage applications for food production and processing. Viruses. 2018;10(4):205.

10.3390/v1004020529671810PMC5923499
47

Chung KM, Liau XL, Tang SS. Bacteriophages and their host range in multidrug-resistant bacterial disease treatment. Pharmaceuticals (Basel). 2023;16(10):1467.

10.3390/ph1610146737895938PMC10610060
48

Wdowiak M, Paczesny J, Raza S. Enhancing the stability of bacteriophages using physical, chemical, and nano-based approaches: A review. Pharmaceutics. 2022;14(9):1936.

10.3390/pharmaceutics1409193636145682PMC9502844
49

Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8(5):317-327.

10.1038/nrmicro231520348932
50

Ranveer SA, Dasriya V, Ahmad MF, Dhillon HS, Samtiya M, Shama E, et al. Positive and negative aspects of bacteriophages and their immense role in the food chain. NPJ Sci Food. 2024;8(1):1.

10.1038/s41538-023-00245-838172179PMC10764738
51

Suleman M, Clark JR, Bull S, Jones JD. Ethical argument for establishing good manufacturing practice for phage therapy in the UK. J Med Ethics. 2024;jme-2023-109423.

10.1136/jme-2023-10942338342498
52

Tanir T, Orellana M, Escalante A, Moraes de Souza C, Koeris MS. Manufacturing bacteriophages: Cell line development, upstream, and downstream considerations. Pharmaceuticals (Basel). 2021;14(9):934.

10.3390/ph1409093434577634PMC8471501
Information
  • Publisher :The Korean Society for Microbiology and The Korean Society of Virology
  • Publisher(Ko) :대한미생물학회‧대한바이러스학회
  • Journal Title :JOURNAL OF BACTERIOLOGY AND VIROLOGY
  • Volume : 54
  • No :2
  • Pages :84-93
  • Received Date : 2024-04-20
  • Revised Date : 2024-06-07
  • Accepted Date : 2024-06-10