All Issue

2024 Vol.54, Issue 2 Preview Page

Original Article

30 June 2024. pp. 94-106
Abstract
References
1

Kim YR, Lee SE, Kim CM, Kim SY, Shin EK, Shin DH, et al. Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun. 2003;71(10):5461-5471.

10.1128/IAI.71.10.5461-5471.200314500463PMC201039
2

Bross MH, Soch K, Morales R, Mitchell RB. Vibrio vulnificus infection: diagnosis and treatment. Am Fam Physician. 2007;76(4):539-544.

3

Jones MK, Oliver JD. Vibrio vulnificus: disease and pathogenesis. Infect Immun. 2009;77(5):1723-1733.

10.1128/IAI.01046-0819255188PMC2681776
4

Kim HU, Kim SY, Jeong H, Kim TY, Kim JJ, Choy HE, et al. Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery. Mol Syst Biol. 2011;7:460.

10.1038/msb.2010.11521245845PMC3049409
5

Jeong KJ, Kim SY, Na HS, Nguyen CT, Park MJ, Lee SE, Rhee JH. Metabolic Transcriptome Analysis of Vibrio vulnificus Using a Peritoneal Infection Model ASM General Meeting, 2011.

6

Rastogi VK, Girvin ME. Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature. 1999;402(6759):263-268.

10.1038/4622410580496
7

Xie Z, Chen Z. Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant Physiol. 1999;120(1):217-226.

10.1104/pp.120.1.21710318699PMC59253
8

Weber J. Structural biology: Toward the ATP synthase mechanism. Nat Chem Biol. 2010;6(11):794-795.

10.1038/nchembio.45820956969
9

Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-1033.

10.1126/science.116080919460998PMC2849637
10

Ohnishi T. Structural biology: Piston drives a proton pump. Nature. 2010;465(7297):428-429.

10.1038/465428a20505714
11

Sambrook J, Fritsch EF, Maniatis T. Molecular cloning : a laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory press; 1989.

12

Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989;77(1):51-59.

10.1016/0378-1119(89)90358-22744487
13

Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989;77(1):61-68.

10.1016/0378-1119(89)90359-42744488
14

Brewer JH, Allgeier DL. Disposable Hydrogen Generator. Science. 1965;147(3661):1033-1034.

10.1126/science.147.3661.1033.b
15

Brewer JH, Allgeier DL. Safe Self-contained Carbon Dioxide-Hydrogen Anaerobic System. Appl Microbiol. 1966;14(6):985-988.

10.1128/am.14.6.985-988.196616349706PMC1058453
16

de Rautlin de la Roy Y, Messedi N, Grollier G, Grignon B. Kinetics of bactericidal activity of antibiotics measured by luciferin-luciferase assay. J Biolumin Chemilumin. 1991;6(3):193-201.

10.1002/bio.11700603101660671
17

Molin O, Nilsson L, Anséhn S. Rapid detection of bacterial growth in blood cultures by bioluminescent assay of bacterial ATP. J Clin Microbiol. 1983;18(3):521-525.

10.1128/jcm.18.3.521-525.19836630442PMC270846
18

Schifman RB, Wieden M, Brooker J, Chery M, Delduca M, Norgard K, et al. Bacteriuria screening by direct bioluminescence assay of ATP. J Clin Microbiol. 1984;20(4):644-648.

10.1128/jcm.20.4.644-648.19846490851PMC271402
19

Karamohamed S, Guidotti G. Bioluminometric method for real-time detection of ATPase activity. Biotechniques. 2001;31(2):420-425.

10.2144/01312rr0411515379
20

Bogin E, Higashi T, Brodie AF. Oxidative phosphorylation in fractionated bacterial systems. 43. Coupling factors associated with the NAD+ linked electron transport pathway. Arch Biochem Biophys. 1970;136(2):337-351.

10.1016/0003-9861(70)90204-34314107
21

Green DE, Lester R, Ziegler D. Oxidative phosphorylation by an electron transport particle from beef heart. Biochim Biophys Acta. 1956;21(1):80-85.

10.1016/0006-3002(56)90095-613363862
22

Papa S. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim Biophys Acta. 1996;1276(2):87-105.

10.1016/0005-2728(96)00077-1
23

Smeitink JA, Zeviani M, Turnbull DM, Jacobs HT. Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab. 2006;3(1):9-13.

10.1016/j.cmet.2005.12.00116399500
24

Djafarzadeh R, Kerscher S, Zwicker K, Radermacher M, Lindahl M, Schägger H, et al. Biophysical and structural characterization of proton-translocating NADH-dehydrogenase (complex I) from the strictly aerobic yeast Yarrowia lipolytica. Biochim Biophys Acta. 2000;1459(1):230-238.

10.1016/S0005-2728(00)00154-710924914
25

Hunter DR, Komai H, Haworth RA. Oxidative phosphorylation and respiratory control in lysolecithin treated electron transport particles. Biochem Biophys Res Commun. 1974;56(3):647-653.

10.1016/0006-291X(74)90654-84151192
26

Van Verseveld HW, Stouthamer AH. Electron-transport chain and coupled oxidative phosphorylation in methanol-grown Paracoccus denitrificans. Arch Microbiol. 1978;118(1):13-20.

10.1007/BF0040606829587
27

Kumamoto KS, Vukich DJ. Clinical infections of Vibrio vulnificus: a case report and review of the literature. J Emerg Med. 1998;16(1):61-66.

10.1016/S0736-4679(97)00230-89472762
28

Heithoff DM, Conner CP, Mahan MJ. Dissecting the biology of a pathogen during infection. Trends Microbiol. 1997;5(12):509-513.

10.1016/S0966-842X(97)01153-09447664
29

Lee SH, Hava DL, Waldor MK, Camilli A. Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell. 1999;99(6):625-634.

10.1016/S0092-8674(00)81551-210612398
30

Walker JE. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys. 1992;25(3):253-324.

10.1017/S003358350000425X1470679
31

Penefsky HS. On the mechanism of ATP synthesis in oxidative phosphorylation. Trans N Y Acad Sci. 1983;41:139-146.

10.1111/j.2164-0947.1983.tb02795.x6242323
32

Alcántar-Aguirre FC, Chagolla A, Tiessen A, Délano JP, González de la Vara LE. ATP produced by oxidative phosphorylation is channeled toward hexokinase bound to mitochondrial porin (VDAC) in beetroots (Beta vulgaris). Planta. 2013;237(6):1571-1583.

10.1007/s00425-013-1866-423503782
33

Issartel JP, Dupuis A, Garin J, Lunardi J, Michel L, Vignais PV. The ATP synthase (F0-F1) complex in oxidative phosphorylation. Experientia. 1992;48(4):351-362.

10.1007/BF019234291533842
34

Jimenez L, Laporte D, Duvezin-Caubet S, Courtout F, Sagot I. Mitochondrial ATP synthases cluster as discrete domains that reorganize with the cellular demand for oxidative phosphorylation. J Cell Sci. 2014;127(Pt 4):719-726.

10.1242/jcs.13714124338369
35

Reynafarje BD, Ferreira J. Oxidative phosphorylation: kinetic and thermodynamic correlation between electron flow, proton translocation, oxygen consumption and ATP synthesis under close to in vivo concentrations of oxygen. Int J Med Sci. 2008;5(3):143-151.

10.7150/ijms.5.14318566675PMC2424179
36

Teixeira FK, Sanchez CG, Hurd TR, Seifert JR, Czech B, Preall JB, et al. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation. Nat Cell Biol. 2015;17(5):689-696.

10.1038/ncb316525915123PMC4573567
37

Racker E. Electron transport and oxidative phosphorylation in reconstituted membranes. Biokhimiia. 1973;38(5):1070-1075.

38

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267-273.

10.1038/ng118012808457
39

Boekema EJ, Braun HP. Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Biol Chem. 2007;282(1):1-4.

10.1074/jbc.R60003120017102127
40

Efremov RG, Sazanov LA. Structure of the membrane domain of respiratory complex I. Nature. 2011;476(7361):414-420.

10.1038/nature1033021822288
41

Gigliobianco T, Gangolf M, Lakaye B, Pirson B, von Ballmoos C, Wins P, et al. An alternative role of FoF1-ATP synthase in Escherichia coli: synthesis of thiamine triphosphate. Sci Rep. 2013;3:1071.

10.1038/srep0107123323214PMC3545222
42

Maurizio B. Cytochrome oxidase: structure, function, and physiopathology. June 20-21, 1988, Rome, Italy. Proceedings. Ann N Y Acad Sci. 1988;550:1-382.

43

Chance B. Structure and function of the redox site of cytochrome oxidase. Adv Exp Med Biol. 1982;148:95-109.

10.1007/978-1-4615-9281-5_96289641
44

Denis M. Structure and function of cytochrome-c oxidase. Biochimie. 1986;68(3):459-470.

10.1016/S0300-9084(86)80013-X2427124
45

Hejzlarová K, Kaplanová V, Nůsková H, Kovářová N, Ješina P, Drahota Z, et al. Alteration of structure and function of ATP synthase and cytochrome c oxidase by lack of Fo-a and Cox3 subunits caused by mitochondrial DNA 9205delTA mutation. Biochem J. 2015;466(3):601-611.

10.1042/BJ2014146225588698
46

Richter OM, Ludwig B. Cytochrome c oxidase--structure, function, and physiology of a redox-driven molecular machine. Rev Physiol Biochem Pharmacol. 2003;147:47-74.

10.1007/s10254-003-0006-012783267
47

Hang L, John M, Asaduzzaman M, Bridges EA, Vanderspurt C, Kirn TJ, et al. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc Natl Acad Sci U S A. 2003;100(14):8508-8513.

10.1073/pnas.143176910012826608PMC166259
48

Milton DL, O'Toole R, Horstedt P, Wolf-Watz H. Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol. 1996;178(5):1310-1319.

10.1128/jb.178.5.1310-1319.19968631707PMC177804
Information
  • Publisher :The Korean Society for Microbiology and The Korean Society of Virology
  • Publisher(Ko) :대한미생물학회‧대한바이러스학회
  • Journal Title :JOURNAL OF BACTERIOLOGY AND VIROLOGY
  • Volume : 54
  • No :2
  • Pages :94-106
  • Received Date : 2024-05-09
  • Revised Date : 2024-05-28
  • Accepted Date : 2024-05-30