All Issue

2024 Vol.54, Issue 1 Preview Page

Review Article

31 March 2024. pp. 12-39
Abstract
References
1
Tang KWK, Millar BC, Moore JE. Antimicrobial resistance (AMR). Br J Biomed Sci 2023;80:11387. 10.3389/bjbs.2023.1138737448857PMC10336207
2
Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol 2019;51:72-80. 10.1016/j.mib.2019.10.00831733401
3
Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, et al. Antimicrobial resistance: a growing serious threat for global public health. Healthcare 2023;11:1946. 10.3390/healthcare1113194637444780PMC10340576
4
O'Neill J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. London: Wellcome Trust, 2016.
5
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629-55. 10.1016/S0140-6736(21)02724-035065702
6
Pulingam T, Parumasivam T, Gazzali AM, Sulaiman AM, Chee JY, Lakshmanan M, et al. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur J Pharm Sci 2022;170:106103. 10.1016/j.ejps.2021.10610334936936
7
Murray AK. The Novel Coronavirus COVID-19 Outbreak: Global Implications for Antimicrobial Resistance. Front Microbiol 2020;11:1020. 10.3389/fmicb.2020.0102032574253PMC7237633
8
Rehman S. A parallel and silent emerging pandemic: Antimicrobial resistance (AMR) amid COVID-19 pandemic. J Infect Public Health 2023;16:611-7. 10.1016/j.jiph.2023.02.02136857834PMC9942450
9
Rezasoltani S, Yadegar A, Hatami B, Asadzadeh Aghdaei H, Zali MR. Antimicrobial resistance as a hidden menace lurking behind the COVID-19 outbreak: the global impacts of too much hygiene on AMR. Front Microbiol 2020;11:590683. 10.3389/fmicb.2020.59068333384670PMC7769770
10
Helmy YA, Taha-Abdelaziz K, Hawwas HAE, Ghosh S, Alkafaas SS, Moawad MMM, et al. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics 2023;12:274. 10.3390/antibiotics1202027436830185PMC9952301
11
Impey RE, Hawkins DA, Sutton JM, Soares da Costa TP. Overcoming intrinsic and acquired resistance mechanisms associated with the cell wall of gram-negative bacteria. Antibiotics 2020;9:623. 10.3390/antibiotics909062332961699PMC7558195
12
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and Pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268-81. 10.1111/j.1469-0691.2011.03570.x21793988
13
Singer AC, Kirchhelle C, Roberts AP. (Inter) nationalising the antibiotic research and development pipeline. Lancet Infect Dis 2020;20:e54-e62. 10.1016/S1473-3099(19)30552-331753765
14
Coates AR, Halls G, Hu Y. Novel classes of antibiotics or more of the same?. Br J Pharmacol 2011;163:184-94. 10.1111/j.1476-5381.2011.01250.x21323894PMC3085877
15
Gwynn MN, Portnoy A, Rittenhouse SF, Payne DJ. Challenges of antibacterial discovery revisited. Ann N Y Acad Sci 2010;1213:5-19. 10.1111/j.1749-6632.2010.05828.x21058956
16
Monserrat-Martinez A, Gambin Y, Sierecki E. Thinking outside the bug: molecular targets and strategies to overcome antibiotic resistance. Int J Mol Sci 2019;20:1255. 10.3390/ijms2006125530871132PMC6470534
17
Van Duijkeren E, Rantala M, Bouchard D, Busani L, Catry B, Kaspar H, et al. The use of aminopenicillins in animals within the EU, emergence of resistance in bacteria of animal and human origin and its possible impact on animal and human health. J Antimicrob Chemother 2023;78:1827-42. 10.1093/jac/dkad15737229552
18
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharmacy Ther 2015;40:277-83.
19
Bhattacharya R, Bose D, Gulia K, Jaiswal A. Impact of antimicrobial resistance on sustainable development goals and the integrated strategies for meeting environmental and socio-economic targets. Environ Prog Sustain Energy 2024;43:e14320. 10.1002/ep.14320
20
Dapás JI, Quirós RE. Antimicrobial stewardship in low-and middle-income countries. Curr Treat Options Infect Dis 2018;10:17-27. 10.1007/s40506-018-0141-4
21
World Health Organization. Global antimicrobial resistance and use surveillance system (GLASS) report: 2022. Geneva: World Health Organization, 2022.
22
Wang CH, Hsieh YH, Powers ZM, Kao CY. Defeating antibiotic-resistant bacteria: exploring alternative therapies for a post-antibiotic era. Int J Mol Sci 2020;21:1061. 10.3390/ijms2103106132033477PMC7037027
23
Xie M, Gao M, Yun Y, Malmsten M, Rotello VM, Zboril R, et al. Antibacterial nanomaterials: mechanisms, impacts on antimicrobial resistance and design principles. Angew Chem Int Ed Engl 2023;62:e202217345. 10.1002/anie.20221734536718001
24
Ekwebelem OC, Aleke J, Ofielu E, Nnorom-Dike O. CRISPR-Cas9 system: a revolutionary tool in the fight against antimicrobial resistance. Infect Microbes Dis 2021;3:51-6. 10.1097/IM9.0000000000000049
25
Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, et al. Antimicrobial resistance: a growing serious threat for global public health. Healthcare 2023;11:1946. 10.3390/healthcare1113194637444780PMC10340576
26
Abushaheen MA, Muzaheed, Fatani AJ, Alosaimi M, Mansy W, George M, et al. Antimicrobial resistance, mechanisms and its clinical significance. Dis Mon 2020;66:100971. 10.1016/j.disamonth.2020.10097132201008
27
Ali J, Rafiq QA, Ratcliffe E. Antimicrobial resistance mechanisms and potential synthetic treatments. Future Sci OA 2018;4:FSO290. 10.4155/fsoa-2017-010929682325PMC5905577
28
Wood TK, Knabel SJ, Kwan BW. Bacterial persister cell formation and dormancy. Appl Environ Microbiol 2013;79:7116-21. 10.1128/AEM.02636-1324038684PMC3837759
29
Tao S, Chen H, Li N, Wang T, Liang W. The Spread of Antibiotic Resistance Genes In Vivo Model. Can J Infect Dis Med Microbiol 2022;2022:3348695. 10.1155/2022/334869535898691PMC9314185
30
Gaurav A, Bakht P, Saini M, Pandey S, Pathania R. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors. Microbiology (Reading) 2023;169:001333. 10.1099/mic.0.00133337224055PMC10268834
31
Kaldalu N, Hauryliuk V, Turnbull KJ, La Mensa A, Putrinš M, Tenson T. In Vitro Studies of Persister Cells. Microbiol Mol Biol Rev 2020;84:e00070-20. 10.1128/MMBR.00070-2033177189PMC7667008
32
Zhou Y, Liao H, Pei L, Pu Y. Combatting persister cells: The daunting task in post-antibiotics era. Cell Insight 2023;2:100104. 10.1016/j.cellin.2023.10010437304393PMC10250163
33
Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep 2020;21:e51034. 10.15252/embr.20205103433400359PMC7726816
34
Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 2018;4:482-501. 10.3934/microbiol.2018.3.48231294229PMC6604941
35
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019;37:177-92. 10.1016/j.biotechadv.2018.11.01330500353
36
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021;10:1310. 10.3390/pathogens1010131034684258PMC8541462
37
Zhang F, Cheng W. The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics 2022;11:1215. 10.3390/antibiotics1109121536139994PMC9495013
38
Wang X, Yu D, Chen L. Antimicrobial resistance and mechanisms of epigenetic regulation. Front Cell Infect Microbiol 2023;13:1199646. 10.3389/fcimb.2023.119964637389209PMC10306973
39
Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, et al. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J Mol Biol 2019;431:3472-500. 10.1016/j.jmb.2019.04.00230959050PMC6723624
40
Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health 2021;14:1750-66. 10.1016/j.jiph.2021.10.02034756812
41
Xuan J, Feng W, Wang J, Wang R, Zhang B, Bo L, et al. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist Updat 2023;68:100954. 10.1016/j.drup.2023.10095436905712
42
Sharma A, Gupta VK, Pathania R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J Med Res 2019;149:129-45. 10.4103/ijmr.IJMR_2079_1731219077PMC6563736
43
Abebe GM. The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. Int J Microbiol 2020;2020:1705814. 10.1155/2020/170581432908520PMC7468660
44
Zhao A, Sun J, Liu Y. Understanding bacterial biofilms: From definition to treatment strategies. Front Cell Infect Microbiol 2023;13:1137947. 10.3389/fcimb.2023.113794737091673PMC10117668
45
Samrot AV, Abubakar Mohamed A, Faradjeva E, Si Jie L, Hooi Sze C, Arif A, et al. Mechanisms and Impact of Biofilms and Targeting of Biofilms Using Bioactive Compounds-A Review. Medicina (Kaunas) 2021;57:839. 10.3390/medicina5708083934441045PMC8401077
46
Urban-Chmiel R, Marek A, Stępień-Pyśniak D, Wieczorek K, Dec M, Nowaczek A, et al. Antibiotic Resistance in Bacteria-A Review. Antibiotics 2022;11:1079. 10.3390/antibiotics1108107936009947PMC9404765
47
Watford S, Warrington SJ. Bacterial DNA Mutations. Treasure Island (FL): StatPearls Publishing, 2024.
48
Alby K, Miller MB. Principles and practice of pediatric infectious diseases. Elsevier, 2018.
49
Zhang L, Tian X, Sun L, Mi K, Wang R, Gong F, et al. Bacterial Efflux Pump Inhibitors Reduce Antibiotic Resistance. Pharmaceutics 2024;16:170. 10.3390/pharmaceutics1602017038399231PMC10892612
50
Habboush Y, Guzman N. Antibiotic Resistance. In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2023. PMID: 30020649.
51
Lee JH. Perspectives towards antibiotic resistance: from molecules to population. J Microbiol 2019;57:181-4. 10.1007/s12275-019-0718-830806975
52
Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol 2020;88:26-40. 10.1007/s00239-019-09914-331659373
53
Morrison L, Zembower TR. Antimicrobial resistance. Gastrointest Endosc Clin N Am 2020;30:619-35. 10.1016/j.giec.2020.06.00432891221
54
Sekyere JO, Asante J. Emerging mechanisms of antimicrobial resistance in bacteria and fungi: advances in the era of genomics. Future Microbiol 2018;13:241-62. 10.2217/fmb-2017-017229319341
55
Van Duijkeren E, Schink AK, Roberts MC, Wang Y, Schwarz S. Mechanisms of bacterial resistance to antimicrobial agents. Microbiol Spectr 2018;6. 10.1128/microbiolspec.ARBA-0019-201729327680
56
Varela MF, Stephen J, Lekshmi M, Ojha M, Wenzel N, Sanford LM, et al. Bacterial resistance to antimicrobial agents. Antibiotics 2021;10:593. 10.3390/antibiotics1005059334067579PMC8157006
57
Peterson E, Kaur P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol 2018;9:2928. 10.3389/fmicb.2018.0292830555448PMC6283892
58
Naylor NR, Atun R, Zhu N, Kulasabanathan K, Silva S, Chatterjee A, et al. Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrob Resist Infect Control 2018;7:58. 10.1186/s13756-018-0336-y29713465PMC5918775
59
European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report 2020. Stockholm: ECDC, 2022.
60
Ahmed I, Rabbi MB, Sultana S. Antibiotic resistance in Bangladesh: A systematic review. Int J Infect Dis 2019;80:54-61. 10.1016/j.ijid.2018.12.01730634043
61
Kakchapati S, Rijal A, KC SP. Antimicrobial Resistance in Nepal: The Next Invisible Pandemic. Health Prospect 2021;20:22-4. 10.3126/hprospect.v20i1.41210
62
Ariyawansa S, Gunawardana KN, Hapudeniya MM, Manelgamage NJ, Karunarathne CR, Madalagama RP, et al. One Health Surveillance of Antimicrobial Use and Resistance: Challenges and Successes of Implementing Surveillance Programs in Sri Lanka. Antibiotics 2023;12:446. 10.3390/antibiotics1203044636978313PMC10044479
63
Puspandari N, Sunarno S, Febrianti T, Febriyana D, Saraswati RD, Rooslamiati I, et al. Extended spectrum beta-lactamase-producing Escherichia coli surveillance in the human, food chain, and environment sectors: Tricycle project (pilot) in Indonesia. One Health 2021;13:100331. 10.1016/j.onehlt.2021.10033134632041PMC8493575
64
San T, Aung MS, San N, Aung MMZ, Mon WLY, Thazin TE, et al. Bacterial Species and Antimicrobial Resistance of Clinical Isolates from Pediatric Patients in Yangon, Myanmar, 2020. Infect Dis Rep 2022;14:26-32. 10.3390/idr1401000435076535PMC8788269
65
Lim C, Takahashi E, Hongsuwan M, Wuthiekanun V, Thamlikitkul V, Hinjoy S, et al. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. Elife 2016;5:e18082. 10.7554/eLife.1808227599374PMC5030096
66
Guo Y, Ding L, Yang Y, Han R, Yin D, Wu S, et al. Multicenter Antimicrobial Resistance Surveillance of Clinical Isolates from Major Hospitals - China, 2022. China CDC Wkly 2023;5:1155-60. 10.46234/ccdcw2023.21738164466PMC10757731
67
Sihombing B, Bhatia R, Srivastava R, Aditama TY, Laxminarayan R, Rijal S. Response to antimicrobial resistance in South-East Asia Region. Lancet Reg Health Southeast Asia 2023;18:100306. 10.1016/j.lansea.2023.10030638028162PMC10667315
68
Catalano A, Iacopetta D, Ceramella J, Scumaci D, Giuzio F, Saturnino C, et al. Multidrug resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules 2022;27:616. 10.3390/molecules2703061635163878PMC8839222
69
Parmanik A, Das S, Kar B, Bose A, Dwivedi GR, Pandey MM. Current treatment strategies against multidrug- resistant bacteria: a review. Curr Microbiol 2022;79:388. 10.1007/s00284-022-03061-736329256PMC9633024
70
Mohsin S, Amin MN. Superbugs: A constraint to achieving the Sustainable Development Goals. Bull Natl Res Cent 2023;47:63. 10.1186/s42269-023-01036-7
71
Towner KJ. Acinetobacter: An old friend, but a new enemy. J Hosp Infect 2009;73:355-63. 10.1016/j.jhin.2009.03.03219700220
72
Sharifipour E, Shams S, Esmkhani M, Khodadadi J, Fotouhi-Ardakani R, Koohpaei A, et al. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect Dis 2020;20:646. 10.1186/s12879-020-05374-z32873235PMC7461753
73
Hurst AL, Neemann KA, Chatterjee A. New antibiotics. In: Hurst AL, Neemann KA, Chatterjee A, editors. Viral, Parasitic, Bacterial, and Fungal Infections. Academic Press, 2023. p. 675-698 10.1016/B978-0-323-85730-7.00036-9
74
Bassetti M, Rello J, Blasi F, Goossens H, Sotgiu G, Tavoschi L, et al. Systematic review of the impact of appropriate versus inappropriate initial antibiotic therapy on outcomes of patients with severe bacterial infections. Int J Antimicrob Agents 2020 Dec;56:106184. 10.1016/j.ijantimicag.2020.10618433045353
75
Wunderink RG, Matsunaga Y, Ariyasu M, Clevenbergh P, Echols R, Kaye KS, et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis 2021;21:213-25. 10.1016/S1473-3099(20)30731-333058798
76
Portsmouth S, van Veenhuyzen D, Echols R, Machida M, Ferreira JCA, Ariyasu M, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by gram-negative uropathogens: A phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect Dis 2018;18:1319-28. 10.1016/S1473-3099(18)30554-130509675
77
Nordmann P, Shields RK, Doi Y, Takemura M, Echols R, Matsunaga Y, et al. Mechanisms of reduced susceptibility to Cefiderocol among isolates from the credible-CR and APEKS-NP Clinical Trials. Microb Drug Resist 2022;28:398-407. 10.1089/mdr.2021.018035076335PMC9058874
78
Paul M, Daikos GL, Durante-Mangoni E, Yahav D, Carmeli Y, Benattar YD, et al. Colistin alone versus Colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant gram-negative bacteria: An open-label, Randomised Controlled Trial. Lancet Infect Dis 2018;18:391-400. 10.1016/S1473-3099(18)30099-929456043
79
Maraolo AE, Ong DSY. Colistin plus meropenem versus Colistin alone for invasive infections caused by carbapenem- resistant Acinetobacter baumannii: A rapid systematic review of randomized controlled trials using Bayesian meta-analysis. Clin Microbiol Infect 2023 Sep;29:1208-10. 10.1016/j.cmi.2023.05.03637277093
80
Nutman A, Lellouche J, Temkin E, Daikos G, Skiada A, Durante-Mangoni E, et al. Colistin plus meropenem for carbapenem-resistant gram-negative infections: In vitro synergism is not associated with better clinical outcomes. Clin Microbiol Infect 2020;26:1185-91. 10.1016/j.cmi.2020.05.01032464182
81
Kristoffersson AN, Rognås V, Brill MJE, Dishon-Benattar Y, Durante-Mangoni E, Daitch V, et al. Population pharmacokinetics of colistin and the relation to survival in critically ill patients infected with colistin susceptible and carbapenem-resistant bacteria. Clin Microbiol Infect 2020;26:1644-50. 10.1016/j.cmi.2020.03.01632213316
82
Watkins RR, Du B, Isaacs R, Altarac D. Pathogen-targeted clinical development to address unmet medical need: Design, safety, and efficacy of the attack trial. Clin Infect Dis 2023;76:S210-4. 10.1093/cid/ciad09737125468PMC10150271
83
El-Ghali A, Kunz Coyne AJ, Caniff K, Bleick C, Rybak MJ. Sulbactam-Durlobactam: A novel β-lactam-β-lactamase inhibitor combination targeting carbapenem-resistant Acinetobacter baumannii infections. Pharmacotherapy 2023;43:502-13. 10.1002/phar.280237052117
84
Zendegani E, Dolatabadi S. The Efficacy of Imipenem Conjugated with Synthesized Silver Nanoparticles Against Acinetobacter baumannii Clinical Isolates, Iran. Biol Trace Elem Res 2020;197:330-40. 10.1007/s12011-019-01962-631701463
85
Chen F, Alphonse M, Liu Q. Strategies for nonviral nanoparticle‐based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1609. 10.1002/wnan.160931797562
86
McNeilly O, Mann R, Cummins ML, Djordjevic SP, Hamidian M, Gunawan C. Development of nanoparticle adaptation phenomena in Acinetobacter baumannii: Physiological change and defense response. Microbiol Spectr 2023;11:e0285722. 10.1128/spectrum.02857-2236625664PMC9927149
87
Park J, Shin E, Yeom JH, Choi Y, Joo M, Lee M, et al. Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice. J Microbiol 2022;60:128-36. 10.1007/s12275-022-1620-334964948
88
Al-Kadmy IMS, Aziz SN, Rheima AM, Abid SA, Suhail A, Hamzah IH, et al. Anti-capsular activity of CuO nanoparticles against Acinetobacter baumannii produce efflux pump. Microb Pathog 2023;181:106184. 10.1016/j.micpath.2023.10618437286112
89
Bjanes E, Zhou J, Qayum T, Krishnan N, Zurich RH, Menon ND, et al. Outer membrane vesicle-coated nanoparticle vaccine protects against Acinetobacter baumannii pneumonia and sepsis. Adv NanoBiomed Res 2022;3:2200130. 10.1002/anbr.20220013037151210PMC10156090
90
Shalaby MW, Dokla EME, Serya RAT, Abouzid KAM. Penicillin binding protein 2A: An overview and a medicinal chemistry perspective. Eur J Med Chem 2020;199:112312. 10.1016/j.ejmech.2020.11231232442851
91
Ambade SS, Gupta VK, Bhole RP, Khedekar PB, Chikhale RV. A review on five and six-membered heterocyclic compounds targeting the penicillin-binding protein 2 (PBP2A) of Methicillin-resistant Staphylococcus aureus (MRSA). Molecules 2023;28:7008. 10.3390/molecules2820700837894491PMC10609489
92
Bakthavatchalam YD, Shankar A, Muniyasamy R, Peter JV, Marcus Z, Triplicane Dwarakanathan H, et al. Levonadifloxacin, a recently approved benzoquinolizine fluoroquinolone, exhibits potent in vitro activity against contemporary Staphylococcus aureus isolates and Bengal Bay clone isolates collected from a large Indian Tertiary Care Hospital. J Antimicrob Chemother 2020;75:2156-9. 10.1093/jac/dkaa14232361727
93
Bhatia A, Mastim M, Shah M, Gutte R, Joshi P, Kumbhar D, et al. Efficacy and Safety of a Novel Broad-Spectrum Anti-MRSA Agent Levonadifloxacin Compared with Linezolid for Acute Bacterial Skin and Skin Structure Infections: A Phase 3, Open-label, Randomized Study. J Assoc Physicians India 2020;68:30-6.
94
Holland TL, Cosgrove SE, Doernberg SB, Jenkins TC, Turner NA, Boucher HW, et al. Ceftobiprole for treatment of complicated Staphylococcus aureus bacteremia. N Engl J Med 2023;389:1390-401. 10.1056/NEJMoa230022037754204
95
Muller AE, Punt N, Engelhardt M, Schmitt-Hoffmann AH, Mouton JW. Pharmacokinetics and target attainment of ceftobiprole in Asian and non-Asian subjects. Clin Pharmacol Drug Dev 2018;7:781-7. 10.1002/cpdd.46529768717PMC6618770
96
Rubino CM, Polak M, Schröpf S, Münch HG, Smits A, Cossey V, et al. Pharmacokinetics and safety of ceftobiprole in pediatric patients. Pediatr Infect Dis J 2021;40:997-1003. 10.1097/INF.000000000000329634533489PMC8505155
97
Bosheva M, Gujabidze R, Károly É, Nemeth A, Saulay M, Smart JI, et al. A phase 3, randomized, investigator-blinded trial comparing ceftobiprole with a standard-of-care cephalosporin, with or without vancomycin, for the treatment of pneumonia in pediatric patients. Pediatr Infect Dis J 2021;40:e222-9. 10.1097/INF.000000000000307733480665PMC8104010
98
Zhao X, Huang H, Yuan H, Yuan Z, Zhang Y. A phase III multicentre, randomized, double-blind trial to evaluate the efficacy and safety of oral contezolid versus linezolid in adults with complicated skin and soft tissue infections. J Antimicrob Chemother 2022;77:1762-9. 10.1093/jac/dkac07335265985
99
Hoy SM. Contezolid: First approval. Drugs 2021;81:1587-91. 10.1007/s40265-021-01576-034365606PMC8536612
100
Whittard E, Redfern J, Xia G, Millard A, Ragupathy R, Malic S, et al. Phenotypic and genotypic characterization of novel polyvalent bacteriophages with potent in vitro activity against an international collection of genetically diverse Staphylococcus aureus. Front Cell Infect Microbiol 2021;11:698909. 10.3389/fcimb.2021.69890934295840PMC8290860
101
Wei J, Cheng X, Zhang Y, Gao C, Wang Y, Peng Q, et al. Identification and application of a neutralizing epitope within alpha-hemolysin using human serum antibodies elicited by vaccination. Mol Immunol 2021;135:45-52. 10.1016/j.molimm.2021.03.02833873093
102
Alkofide H, Alhammad AM, Alruwaili A, Aldemerdash A, Almangour TA, Alsuwayegh A, et al. Multidrug-resistant and extensively drug-resistant Enterobacteriaceae: Prevalence, treatments, and outcomes - A retrospective cohort study. Infect Drug Resist 2020;13:4653-62. 10.2147/IDR.S28348833380815PMC7769089
103
Sun Y, Fan J, Chen G, Chen X, Du X, Wang Y, et al. A Phase III, Multicenter, double-blind, randomized clinical trial to evaluate the efficacy and safety of Ceftolozane/tazobactam plus metronidazole versus meropenem in Chinese participants with complicated intra-abdominal infections. Int J Infect Dis 2022;123:157-65. 10.1016/j.ijid.2022.08.00335987467
104
Paterson DL, Bassetti M, Motyl M, Johnson MG, Castanheira M, Jensen EH, et al. Ceftolozane/Tazobactam for hospital-acquired/ventilator-associated bacterial pneumonia due to ESBL-producing Enterobacterales: A subgroup analysis of the aspect-NP clinical trial. J Antimicrob Chemother 2022;77:2522-31. 10.1093/jac/dkac18435781341
105
Tekele SG, Teklu DS, Tullu KD, Birru SK, Legese MH. Extended-spectrum beta-lactamase and AMPC beta-lactamases producing gram-negative bacilli isolated from clinical specimens at international clinical laboratories, Addis Ababa, Ethiopia. PLoS One 2020;15:e0241984. 10.1371/journal.pone.024198433180785PMC7660541
106
Mikamo H, Monden K, Miyasaka Y, Horiuchi T, Fujimoto G, Fukuhara T, et al. The efficacy and safety of tazobactam/ceftolozane in combination with metronidazole in Japanese patients with complicated intra-abdominal infections. J Infect Chemother 2019;25:111-6. 10.1016/j.jiac.2018.10.01230528561
107
Solomkin JS, Gardovskis J, Lawrence K, Montravers P, Sway A, Evans D, et al. Ignite4: Results of a phase 3, randomized, multicenter, prospective trial of Eravacycline vs Meropenem in the treatment of complicated intraabdominal infections. Clin Infect Dis 2019;69:921-9. 10.1093/cid/ciy102930561562PMC6735687
108
Fontoura I, Veriato TS, Raniero LJ, Castilho ML. Analysis of capped silver nanoparticles combined with imipenem against different susceptibility profiles of Klebsiella pneumoniae. Antibiotics 2023;12:535. 10.3390/antibiotics1203053536978403PMC10044117
109
Rizvi SMD, Lila ASA, Moin A, Hussain T, Kamal MA, Sonbol H, et al. Antibiotic-loaded gold nanoparticles: A nano-arsenal against ESBL producer-resistant pathogens. Pharmaceutics 2023;15:430. 10.3390/pharmaceutics1502043036839753PMC9967522
110
Hassett DJ, Kovall RA, Schurr MJ, Kotagiri N, Kumari H, Satish L. The bactericidal tandem drug, ab569: How to eradicate antibiotic-resistant biofilm Pseudomonas aeruginosa in multiple disease settings including cystic fibrosis, Burns/wounds and urinary tract infections. Front Microbiol 2021;12:639362. 10.3389/fmicb.2021.63936234220733PMC8245851
111
Weiner-Lastinger LM, Abner S, Edwards JR, Kallen AJ, Karlsson M, Magill SS, et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015-2017. Infect Control Hosp Epidemiol 2020;41:1-18. 10.1017/ice.2019.29631767041PMC8276252
112
Reynolds D, Kollef M. The epidemiology and pathogenesis and treatment of pseudomonas aeruginosa infections: An update. Drugs 2021;81:2117-31. 10.1007/s40265-021-01635-634743315PMC8572145
113
El Solh AA, Akinnusi ME, Wiener-Kronish JP, Lynch SV, Pineda LA, Szarpa K. Persistent infection with Pseudomonas aeruginosa in ventilator-associated pneumonia. Am J Respir Crit Care Med 2008;178:513-9. 10.1164/rccm.200802-239OC18467510PMC2542430
114
Bassetti S, Tschudin-Sutter S, Egli A, Osthoff M. Optimizing antibiotic therapies to reduce the risk of bacterial resistance. Eur J Intern Med 2022;99:7-12. 10.1016/j.ejim.2022.01.02935074246
115
Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 2002;122:262-8. 10.1378/chest.122.1.26212114368
116
Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009;136:1237-48. 10.1378/chest.09-008719696123
117
Babich T, Naucler P, Valik JK, Giske CG, Benito N, Cardona R, et al. Combination versus monotherapy as definitive treatment for Pseudomonas aeruginosa bacteraemia: A multicentre retrospective observational cohort study. J Antimicrob Chemother 2021;76:2172-81. 10.1093/jac/dkab13433993273
118
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious diseases society of America 2022 guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-e), carbapenem- resistant enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin Infect Dis 2022;75:187-212. 10.1093/cid/ciac26835439291PMC9890506
119
Karruli A, Catalini C, D'Amore C, Foglia F, Mari F, Harxhi A, et al. Evidence-based treatment of Pseudomonas aeruginosa infections: A critical reappraisal. Antibiotics 2023;12:399. 10.3390/antibiotics1202039936830309PMC9952410
120
Timsit JF, Huntington JA, Wunderink RG, Shime N, Kollef MH, Kivistik Ü, et al. Ceftolozane/tazobactam versus meropenem in patients with ventilated hospital-acquired bacterial pneumonia: Subset analysis of the aspect-NP randomized, controlled phase 3 trial. Crit Care 2021;25:290. 10.1186/s13054-021-03694-334380538PMC8356211
121
Roilides E, Ashouri N, Bradley JS, Johnson MG, Lonchar J, Su FH, et al. Safety and efficacy of Ceftolozane/ tazobactam versus Meropenem in neonates and children with complicated urinary tract infection, including Pyelonephritis: A phase 2, randomized clinical trial. Pediatr Infect Dis J 2023;42:292-8. 10.1097/INF.000000000000383236689671PMC9990597
122
Stone GG, Newell P, Gasink LB, Broadhurst H, Wardman A, Yates K, et al. Clinical activity of ceftazidime/avibactam against MDR Enterobacteriaceae and pseudomonas aeruginosa: Pooled data from the ceftazidime/avibactam phase III clinical trial programme. J Antimicrob Chemother 2018;73:2519-23. 10.1093/jac/dky20429912399
123
Titov I, Wunderink RG, Roquilly A, Rodríguez Gonzalez D, David-Wang A, Boucher HW, et al. A randomized, double-blind, multicenter trial comparing efficacy and safety of imipenem/cilastatin/relebactam versus Piperacillin/ tazobactam in adults with hospital-acquired or ventilator-associated bacterial pneumonia (Restore-IMI 2 study). Clin Infect Dis 2021;73:e4539-48. 10.1093/cid/ciaa80332785589PMC8662781
124
Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA, Resch G, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): A randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 2019;19:35-45. 10.1016/S1473-3099(18)30482-130292481
125
Law N, Logan C, Yung G, Furr CL, Lehman SM, Morales S, et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection 2019;47:665-8. 10.1007/s15010-019-01319-031102236
126
Köhler T, Luscher A, Falconnet L, Resch G, McBride R, Mai QA, et al. Personalized aerosolised bacteriophage treatment of a chronic lung infection due to multidrug-resistant Pseudomonas aeruginosa. Nat Commun 2023;14:3629. 10.1038/s41467-023-39370-z37369702PMC10300124
127
Falzon D, Schünemann HJ, Harausz E, González-Angulo L, Lienhardt C, Jaramillo E, et al. World Health Organization Treatment Guidelines for drug-resistant tuberculosis, 2016 update. Eur Respir J 2017;49:1602308. 10.1183/13993003.02308-201628331043PMC5399349
128
Mok J, Lee M, Kim DK, Kim JS, Jhun BW, Jo KW, et al. 9 months of Delamanid, linezolid, levofloxacin, and pyrazinamide versus conventional therapy for treatment of fluoroquinolone-sensitive multidrug-resistant tuberculosis (MDR-end): A multicentre, randomised, open-label phase 2/3 non-inferiority trial in South Korea. Lancet 2022;400:1522-30. 10.1016/S0140-6736(22)01883-936522208
129
Garcia-Prats AJ, Frias M, van der Laan L, De Leon A, Gler MT, Schaaf HS, et al. Delamanid added to an optimized background regimen in children with multidrug-resistant tuberculosis: Results of a phase I/II clinical trial. Antimicrob Agents Chemother 2022;66:e0214421. 10.1128/aac.02144-2135404075PMC9112969
130
Imperial MZ, Nedelman JR, Conradie F, Savic RM. Proposed linezolid dosing strategies to minimize adverse events for treatment of extensively drug-resistant tuberculosis. Clin Infect Dis 2022;74:1736-47. 10.1093/cid/ciab69934604901PMC9155613
131
Paradkar MS, Devaleenal DB, Mvalo T, Arenivas A, Thakur KT, Wolf L, et al. Randomized clinical trial of high-dose rifampicin with or without levofloxacin versus standard of care for pediatric tuberculous meningitis: The TBM-Kids Trial. Clin Infect Dis 2022;75:1594-1601.
132
Esmail A, Oelofse S, Lombard C, Perumal R, Mbuthini L, Goolam Mahomed A, et al. An all-oral 6-month regimen for multidrug-resistant tuberculosis: A multicenter, randomized controlled clinical trial (the next study). Am J Respir Crit Care Med 2022;205:1214-27. 10.1164/rccm.202107-1779OC35175905
133
Heidary M, Zaker Bostanabad S, Amini SM, Jafari A, Ghalami Nobar M, Ghodousi A, et al. The anti-mycobacterial activity of Ag, ZnO, and Ag-ZnO nanoparticles against MDR- and XDR-Mycobacterium tuberculosis. Infect Drug Resist 2019;12:3425-35. 10.2147/IDR.S22140831807033PMC6839584
134
Sheikhpour M, Delorme V, Kasaeian A, Amiri V, Masoumi M, Sadeghinia M, et al. An Effective Nano Drug Delivery and Combination Therapy for the Treatment of Tuberculosis. Sci Rep 2022;12:9591. 10.1038/s41598-022-13682-435688860PMC9185718
135
Truong LB, Medina-Cruz D, Mostafavi E, Rabiee N. Selenium Nanomaterials to Combat Antimicrobial Resistance. Molecules 2021;26:3611. 10.3390/molecules2612361134204666PMC8231168
136
Anyaegbunam NJ, Anekpo CC, Anyaegbunam ZKG, Doowuese Y, Chinaka CB, Odo OJ, et al. The resurgence of phage-based therapy in the era of increasing antibiotic resistance: From research progress to challenges and prospects. Microbiol Res 2022;264:127155. 10.1016/j.micres.2022.12715535969943
137
Hasan M, Ahn J. Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria. Antibiotics 2022;11:915. 10.3390/antibiotics1107091535884169PMC9311878
138
Zeng H, Yang F, Feng Q, Zhang J, Gu J, Jing H, et al. Rapid and broad immune efficacy of a recombinant five-antigen vaccine against Staphylococcus aureus infection in animal models. Vaccines 2020;8:134. 10.3390/vaccines801013432197534PMC7157245
139
Gul S, Ahmad S, Ullah A, Ismail S, Khurram M, Tahir ul Qamar M, et al. Designing a recombinant vaccine against Providencia rettgeri using Immunoinformatics approach. Vaccines 2022;10:189. 10.3390/vaccines1002018935214648PMC8876559
140
Khalid K, Poh CL. The promising potential of reverse vaccinology-based next-generation vaccine development over conventional vaccines against antibiotic-resistant bacteria. Vaccines 2023;11:1264. 10.3390/vaccines1107126437515079PMC10385262
141
Vallet-Regí M, González B, Izquierdo-Barba I. Nanomaterials as promising alternative in the infection treatment. Int J Mol Sci 2019;20:3806. 10.3390/ijms2015380631382674PMC6696612
142
Geng Z, Cao Z, Liu J. Recent advances in targeted antibacterial therapy basing on nanomaterials. Exploration 2023;3:20210117. 10.1002/EXP.2021011737323620PMC10191045
143
Marondedze EF, Olasunkanmi LO, Singh A, Govender PP. Emerging Nanomaterials in Healthcare. In: Emerging Nanomaterials and Their Impact on Society in the 21st Century. Academic Press, 2023. p. 284-303. 10.21741/9781644902172-12
144
Şen Karaman D, Ercan UK, Bakay E, Topaloğlu N, Rosenholm JM. Evolving technologies and strategies for combating antibacterial resistance in the advent of the postantibiotic era. Adv Funct Mater 2020;30:1908783. 10.1002/adfm.201908783
145
Karnwal A, Kumar G, Pant G, Hossain K, Ahmad A, Alshammari MB. Perspectives on Usage of Functional Nanomaterials in Antimicrobial Therapy for Antibiotic-Resistant Bacterial Infections. ACS Omega 2023;8:13492-508. 10.1021/acsomega.3c0011037091369PMC10116640
146
Huh AJ, Kwon YJ. "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 2011;156:128-45. 10.1016/j.jconrel.2011.07.00221763369
147
Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol 2021;19:23-36. 10.1038/s41579-020-0420-132814862PMC8559572
148
Ndayishimiye J, Kumeria T, Popat A, Falconer JR, Blaskovich MAT. Nanomaterials: The New Antimicrobial Magic Bullet. ACS Infect Dis 2022;8:693-712. 10.1021/acsinfecdis.1c0066035343231
149
Niño-Martínez N, Salas Orozco MF, Martínez-Castañón GA, Torres Méndez F, Ruiz F. Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. Int J Mol Sci 2019;20:2808. 10.3390/ijms2011280831181755PMC6600416
150
Xie M, Gao M, Yun Y, Malmsten M, Rotello VM, Zboril R, et al. Antibacterial nanomaterials: mechanisms, impacts on antimicrobial resistance and design principles. Angew Chem Int Ed Engl 2023;62:e202217345. 10.1002/anie.20221734536718001
151
Smerkova K, Dolezelikova K, Bozdechova L, Heger Z, Zurek L, Adam V. Nanomaterials with active targeting as advanced antimicrobials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1636. 10.1002/wnan.163632363802
152
Gao F, Xu L, Yang B, Fan F, Yang L. Kill the real with the fake: eliminate intracellular Staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier. ACS Infect Dis 2019;5:218-27. 10.1021/acsinfecdis.8b0021230489062
153
Wang Y, Yuan Q, Feng W, Pu W, Ding J, Zhang H, et al. Targeted delivery of antibiotics to the infected pulmonary tissues using ROS-responsive nanoparticles. J Nanobiotechnology 2019;17:103. 10.1186/s12951-019-0537-431581948PMC6777033
154
Zhang D, Wei Y, Chen K, Zhang X, Xu X, Shi Q, et al. Biocompatible reactive oxygen species (ROS)-responsive nanoparticles as superior drug delivery vehicles. Adv Healthc Mater 2015;4:69-76. 10.1002/adhm.20140029925147049
155
Zhang Q, Zhang F, Chen Y, Dou Y, Tao H, Zhang D, et al. Structure-property correlations of reactive oxygen species-responsive and hydrogen peroxide-eliminating materials with anti-oxidant and anti-inflammatory activities. Chem Mater 2017;29:8221-38. 10.1021/acs.chemmater.7b02412
156
Puligujja P, McMillan J, Kendrick L, Li T, Balkundi S, Smith N, et al. Macrophage folate receptor-targeted antiretroviral therapy facilitates drug entry, retention, antiretroviral activities and biodistribution for reduction of human immunodeficiency virus infections. Nanomedicine 2013;9:1263-73. 10.1016/j.nano.2013.05.00323680933PMC3779529
157
Chono S, Tanino T, Seki T, Morimoto K. Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J Control Release 2008;127:50-8. 10.1016/j.jconrel.2007.12.01118230410
158
Saruchi, Kaur M, Kumar V, Ghfar AA, Pandey S. A Green Approach for the Synthesis of Silver Nanoparticle- Embedded Chitosan Bionanocomposite as a Potential Device for the Sustained Release of the Itraconazole Drug and Its Antibacterial Characteristics. Polymers 2022;14:1911. 10.3390/polym1409191135567081PMC9104402
159
Hsueh YH, Lin KS, Ke WJ, Hsieh CT, Chiang CL, Tzou DY, et al. The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PLoS One 2015;10:e0144306. 10.1371/journal.pone.014430626669836PMC4682921
160
Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 2016;7:1831. 10.3389/fmicb.2016.0183127899918PMC5110546
161
Skłodowski K, Chmielewska-Deptuła SJ, Piktel E, Wolak P, Wollny T, Bucki R. Metallic nanosystems in the development of antimicrobial strategies with high antimicrobial activity and high biocompatibility. Int J Mol Sci 2023;24:2104. 10.3390/ijms2403210436768426PMC9917064
162
Arya G, Sharma N, Mankamna R, Nimesh S. Antimicrobial silver nanoparticles: future of nanomaterials. In: Prasad R, editor. Microbial nanobionics. Nanotechnology in the life sciences. Cham: Springer, 2019. 10.1007/978-3-030-16534-5_6
163
Maurer LL, Meyer JN. A systematic review of evidence for silver nanoparticle-induced mitochondrial toxicity. Environ Sci Nano 2016;3:311-22. 10.1039/C5EN00187K
164
Alotaibi AM, Alsaleh NB, Aljasham AT, Tawfik EA, Almutairi MM, Assiri MA, et al. Silver nanoparticle-based combinations with antimicrobial agents against antimicrobial-resistant clinical isolates. Antibiotics 2022;11:1219. 10.3390/antibiotics1109121936139997PMC9495250
165
Lu J, Wang Y, Jin M, Yuan Z, Bond P, Guo J. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Water Res 2020;169:115229. 10.1016/j.watres.2019.11522931783256
166
Yılmaz GE, Göktürk I, Ovezova M, Yılmaz F, Kılıç S, Denizli A. Antimicrobial Nanomaterials: A Review. Hygiene 2023;3:269-90. 10.3390/hygiene3030020
167
Barman A, Deb B, Chakraborty S. A glance at genome editing with CRISPR-Cas9 technology. Curr Genet 2020;66:447-62. 10.1007/s00294-019-01040-331691023
168
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015;13:722-36. 10.1038/nrmicro356926411297PMC5426118
169
Araya DP, Palmer KL, Duerkop BA. Correction: CRISPR-based antimicrobials to obstruct antibiotic-resistant and pathogenic bacteria. PLoS Pathog 2021;17:e1010153.. 10.1371/journal.ppat.101015334898641PMC8668111
170
Kim JS, Cho DH, Park M, Chung WJ, Shin D, Ko KS, et al. CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic- Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases. J Microbiol Biotechnol 2016;26:394-401. 10.4014/jmb.1508.0808026502735
171
Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 2014;32:1146-50. 10.1038/nbt.304325282355PMC4317352
172
Yosef I, Manor M, Kiro R, Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic- resistant bacteria. Proc Natl Acad Sci U S A 2015;112:7267-72. 10.1073/pnas.150010711226060300PMC4466736
173
Javed MU, Hayat MT, Mukhtar H, Imre K. CRISPR-Cas9 System: A Prospective Pathway toward Combatting Antibiotic Resistance. Antibiotics 2023;12:1075. 10.3390/antibiotics1206107537370394PMC10295005
174
Uribe RV, Rathmer C, Jahn LJ, Ellabaan MMH, Li SS, Sommer MOA. Bacterial resistance to CRISPR-Cas antimicrobials. Sci Rep 2021;11:17267. 10.1038/s41598-021-96735-434446818PMC8390487
175
Chen J, Guo Z, Tian H, Chen X. Production and clinical development of nanoparticles for gene delivery. Mol Ther Methods Clin Dev 2016;3:16023. 10.1038/mtm.2016.2327088105PMC4822651
176
Chen M, Yu X, Huo Q, Yuan Q, Li X, Xu C, et al. Biomedical potentialities of silver nanoparticles for clinical multiple drug-resistant Acinetobacter baumannii. J Nanomater 2019;2019:3754018. 10.1155/2019/3754018
177
Wan F, Draz MS, Gu M, Yu W, Ruan Z, Luo Q. Novel strategy to combat antibiotic resistance: a sight into the combination of CRISPR/Cas9 and nanoparticles. Pharmaceutics 2021;13:352. 10.3390/pharmaceutics1303035233800235PMC7998274
178
Tao S, Chen H, Li N, Liang W. The Application of the CRISPR-Cas System in Antibiotic Resistance. Infect Drug Resist 2022;15:4155-68. 10.2147/IDR.S37086935942309PMC9356603
179
Duan L, Ouyang K, Xu X, Xu L, Wen C, Zhou X, et al. Nanoparticle delivery of CRISPR/Cas9 for genome editing. Front Genet 2021;12:673286. 10.3389/fgene.2021.67328634054927PMC8149999
180
Liu J, Chang J, Jiang Y, Meng X, Sun T, Mao L, et al. Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles. Adv Mater 2019;31:e1902575. 10.1002/adma.20190257531215123PMC6732788
181
Tang Q, Liu J, Jiang Y, Zhang M, Mao L, Wang M. Cell-selective messenger RNA delivery and CRISPR/Cas9 genome editing by modulating the interface of phenylboronic acid-derived lipid nanoparticles and cellular surface sialic acid. ACS Appl Mater Interfaces 2019;11:46585-90. 10.1021/acsami.9b1774931763806
182
Yu K, Cheng Z, Sun Y, Ren H, Chen H, Xia Y. Eliminated colistin-resistance dissemination by a carbon nanotube- mediated CRISPR/Cas9 system-a combined effect of curing plasmid and conjugation blocking. Environ Sci Nano 2023;10:2387-98. 10.1039/D3EN00145H
183
Li X, Gui S, Gui R, Li J, Huang R, Hu M, et al. Multifunctional Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9-Based Nanobomb against Carbapenem-Resistant Acinetobacter baumannii Infection through Cascade Reaction and Amplification Synergistic Effect. ACS Nano 2023;17:24632-53. 10.1021/acsnano.3c0326737874946
184
Ma X, Cheng Y, Jian H, Feng Y, Chang Y, Zheng R, et al. Hollow, rough, and nitric oxide-releasing cerium oxide nanoparticles for promoting multiple stages of wound healing. Adv Healthc Mater 2019;8:e1900256. 10.1002/adhm.20190025631290270
Information
  • Publisher :The Korean Society for Microbiology and The Korean Society of Virology
  • Publisher(Ko) :대한미생물학회‧대한바이러스학회
  • Journal Title :JOURNAL OF BACTERIOLOGY AND VIROLOGY
  • Volume : 54
  • No :1
  • Pages :12-39
  • Received Date : 2024-01-23
  • Revised Date : 2024-03-05
  • Accepted Date : 2024-03-11