Original Article
Dimopoulos G, Akova M, Rello J, Poulakou G. Understanding resistance in Pseudomonas. Intensive Care Med. 2020;46(2):350-352.
10.1007/s00134-019-05905-631960069PMC7224039Hancock RE, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat. 2000;3(4):247-255.
10.1054/drup.2000.015211498392Giani T, Arena F, Pollini S, Di Pilato V, D'Andrea MM, Henrici De Angelis L, et al. Italian nationwide survey on Pseudomonas aeruginosa from invasive infections: activity of ceftolozane/tazobactam and comparators, and molecular epidemiology of carbapenemase producers. J Antimicrob Chemother. 2018;73(3):664-671.
10.1093/jac/dkx45329216350Oliver A, Mulet X, López-Causapé C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat. 2015;21-22:41-59.
10.1016/j.drup.2015.08.00226304792Juan C, Peña C, Oliver A. Host and pathogen biomarkers for severe Pseudomonas aeruginosa infections. J Infect Dis. 2017;215(suppl_1):S44-S51.
10.1093/infdis/jiw29928375513Marti E, Variatza E, Balcazar JL. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 2014;22(1):36-41.
10.1016/j.tim.2013.11.00124289955Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318-1322.
10.1126/science.284.5418.131810334980Remold SK, Brown CK, Farris JE, Hundley TC, Perpich JA, Purdy ME. Differential habitat use and niche partitioning by Pseudomonas species in human homes. Microb Ecol. 2011;62(3):505-517.
10.1007/s00248-011-9844-521503776Berendes DM, Yang PJ, Lai A, Hu D, Brown J. Estimation of global recoverable human and animal fecal biomass. Nat Sustain. 2018;1(11):679-685.
10.1038/s41893-018-0167-038464867PMC10922008Sobsey MD, Bartram S. Water quality and health in the new millennium: the role of the World Health Organization guidelines for drinking-water quality. Forum Nutr. 2003;56:396-405.
Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006;14(4):176-182.
10.1016/j.tim.2006.02.00616537105Munna MS, Zeba Z, Noor R. Influence of temperature on the growth of Pseudomonas putida. S J Microbiol. 2015;5(1):9-12.
10.3329/sjm.v5i1.26912World Health Organization. Progress on household drinking water, sanitation and hygiene 2000-2017: special focus on inequalities. World Health Organization. 2019.
Abkar L, Moghaddam HS, Fowler SJ. Microbial ecology of drinking water from source to tap. Sci Total Environ. 2024;908:168077.
10.1016/j.scitotenv.2023.16807737914126Sneath PH, Mair NS, Sharpe ME, Holt JG. Bergey's manual of systematic bacteriology. Volume 2. New York: Springer; 1986.
10.1515/9783112581704-021Collins CH, Lyne PM. Microbiological methods. 5th ed. London: Butterworths and Co. Publishers Ltd; 1984. p.448.
Oscáriz JC, Pisabarro AG. Characterization and mechanism of action of cerein 7, a bacteriocin produced by Bacillus cereus Bc7. J Appl Microbiol. 2000;89(2):361-369.
10.1046/j.1365-2672.2000.01123.x10971770Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology. 2009;15(1):1-23.
MA, Cockerill FR, Craig WA. Clinical and laboratory standards institute. Performance Standards for Antimicrobial Susceptibility Testing: Eighteenth Informational Supplement. Wayne: Clinical and Laboratory Standards Institute. 2008.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-281.
10.1111/j.1469-0691.2011.03570.x21793988Priya P, Aneesh B, Sivakumar KC, Harikrishnan K. Comparative proteomic analysis of saline tolerant, phosphate solubilizing endophytic Pantoea sp., and Pseudomonas sp. Isolated from Eichhornia rhizosphere. Microbiol Res. 2022;265:127217.
10.1016/j.micres.2022.12721736206648Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM. Effects of salinity, temperature, pH and crude oil concentration on biodegradation of crude oil by Pseudomonas aeruginosa. J Biol Environ Sci. 2007;1(2):51-57.
Ratzke C, Gore J. Modifying and reacting to the environmental pH can drive bacterial interactions. PLOS Biol. 2018;16(3):e2004248.
10.1371/journal.pbio.200424829538378PMC5868856Chatterjee P, Samaddar S, Anandham R, Kang Y, Kim K, Selvakumar G, et al. Beneficial soil bacterium Pseudomonas frederiksbergensis OS261 augments salt tolerance and promotes red pepper plant growth. Front Plant Sci. 2017;8:705.
10.3389/fpls.2017.0070528523010PMC5415621Egamberdieva D, Jabborova D, Hashem A. Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi J Biol Sci. 2015;22(6):773-779.
10.1016/j.sjbs.2015.04.01926587006PMC4625397Saleh-Lakha S, Shannon KE, Henderson SL, Goyer C, Trevors JT, Zebarth BJ, et al. Effect of pH and temperature on denitrification gene expression and activity in Pseudomonas mandelii. Appl Environ Microbiol. 2009;75(12):3903-3911.
10.1128/AEM.00080-0919376915PMC2698340Deshwal VK, Kumar P. Effect of salinity on growth and PGPR activity of Pseudomonads. J Acad Ind Res. 2013;2(6):353-356.
Somoza-Coutiño G, Wong-Villarreal A, Blanco-González C, Pérez-Sariñana B, Mora-Herrera M, Mora-Herrera SI, et al. A bacterial strain of Pseudomonas aeruginosa B0406 pathogen opportunistic, produce a biosurfactant with tolerance to changes of pH, salinity and temperature. Microb Pathog. 2020;139:103869.
10.1016/j.micpath.2019.10386931734386Vimal SR, Gupta J, Singh JS. Effect of salt tolerant Bacillus sp. and Pseudomonas sp. on wheat (Triticum aestivum L.) growth under soil salinity: a comparative study. Microbiol Res. 2018;9(1):7462.
10.4081/mr.2018.7462Gonçalves LDDA, Piccoli RH, Peres AP, Saúde AV. Predictive modeling of Pseudomonas fluorescens growth under different temperature and pH values. Braz J Microbiol. 2017;48(2):352-358.
10.1016/j.bjm.2016.12.00628110805PMC5470445Lewenza S, Johnson L, Charron-Mazenod L, Hong M, Mulcahy-O'Grady H. Extracellular DNA controls expression of Pseudomonas aeruginosa genes involved in nutrient utilization, metal homeostasis, acid pH tolerance and virulence. J Med Microbiol. 2020;69(6):895-905.
10.1099/jmm.0.00118432242794Membré JM, Burlot PM. Effects of temperature, pH, and NaCl on growth and pectinolytic activity of Pseudomonas marginalis. Appl Environ Microbiol. 1994;60(6):2017-2022.
10.1128/aem.60.6.2017-2022.199416349288PMC201596Tribelli PM, López NI. Insights into the temperature responses of Pseudomonas species in beneficial and pathogenic host interactions. Appl Microbiol Biotechnol. 2022;106(23):7699-7709.
10.1007/s00253-022-12243-z36271255Manaia CM, Moore ERB. Pseudomonas thermotolerans sp. nov., a thermotolerant species of the genus Pseudomonas sensu stricto. Int J Syst Evol Microbiol. 2002;52(6):2203-2209.
10.1099/00207713-52-6-220312508889Butiuc-Keul A, Carpa R, Podar D, Szekeres E, Muntean V, Iordache D, et al. Antibiotic resistance in Pseudomonas spp. through the urban water cycle. Curr Microbiol. 2021;78(4):1227-1237.
10.1007/s00284-021-02389-w33625570Kittinger C, Lipp M, Baumert R, Folli B, Koraimann G, Toplitsch D, et al. Antibiotic resistance patterns of Pseudomonas spp. isolated from the river Danube. Front Microbiol. 2016;7:586.
10.3389/fmicb.2016.0058627199920PMC4853796- Publisher :The Korean Society for Microbiology and The Korean Society of Virology
- Publisher(Ko) :대한미생물학회‧대한바이러스학회
- Journal Title :JOURNAL OF BACTERIOLOGY AND VIROLOGY
- Volume : 54
- No :4
- Pages :343-354
- Received Date : 2024-08-11
- Revised Date : 2024-09-12
- Accepted Date : 2024-09-23
- DOI :https://doi.org/10.4167/jbv.2024.54.4.343