All Issue

2024 Vol.54, Issue 4 Preview Page

Original Article

31 December 2024. pp. 325-342
Abstract
References
1

Villar-Hernández R, Ghodousi A, Konstantynovska O, Duarte R, Lange C, Raviglione M. Tuberculosis: current challenges and beyond. Breathe. 2023;19(1):220166.

10.1183/20734735.0166-202237334103PMC10270564
2

WHO. Global tuberculosis report 2023. 2023 Nov.

3

Yoon Y, Seo H, Kim S, Lee Y, Rahim MA, Lee S, et al. Anti-Tuberculosis Activity of Pediococcus acidilactici Isolated from Young Radish Kimchi against Mycobacterium tuberculosis. J Microbiol Biotechnol. 2021 Dec 28;31(12):1632-1642.

10.4014/jmb.2107.0704434584040PMC9705845
4

Lee Y, Seo H, Kim S, Rahim MA, Yoon Y, Jung J, et al. Activity of Lactobacillus crispatus isolated from vaginal microbiota against Mycobacterium tuberculosis. J Microbiol. 2021;59(11):1019-1030.

10.1007/s12275-021-1332-034724180
5

Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, Vélez E, Perdigón G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann Nutr Metab. 2019;74(2):115-124.

10.1159/00049642630673668
6

Li M, Lee K, Hsu M, Nau G, Mylonakis E, Ramratnam B. Lactobacillus-derived extracellular vesicles enhance host immune responses against vancomycin-resistant enterococci. BMC Microbiol. 2017;17(1):66.

10.1186/s12866-017-0977-728288575PMC5348868
7

Møller KV, Nguyen HTT, Mørch MGM, Hesselager MO, Mulder FAA, Fuursted K, et al. A Lactobacilli diet that confers MRSA resistance causes amino acid depletion and increased antioxidant levels in the C. elegans host. Front Microbiol. 2022;13:886206.

10.3389/fmicb.2022.88620635966651PMC9366307
8

Seo H, Yoon Y, Kim S, Ghorbanian F, Tajdozian H, Jo S, et al. Anti-tuberculosis effect of microbiome therapeutic PMC205 in extensively drug-resistant pulmonary tuberculosis in vivo. Int J Antimicrob Agents. 2024;64(3):107274.

10.1016/j.ijantimicag.2024.10727439002701
9

Rahim MA, Seo H, Kim S, Barman I, Ghorbanian F, Hossain MS, et al. Exploring the potential of Lactocaseibacillus rhamnosus PMC203 in inducing autophagy to reduce the burden of Mycobacterium tuberculosis. Med Microbiol Immunol. 2024;213(1):14.

10.1007/s00430-024-00794-z38977511PMC11231020
10

Gueimonde M, Nylund L, He F, Hiramatsu M, Salminen S. Adhesion and competitive inhibition and displacement of human enteropathogens by selected lactobacilli. Food Research International. 2006 May;39(4):467-471.

10.1016/j.foodres.2005.10.003
11

Neekhra S, Pandith J, Mir N, Manzoor A, Ahmad S, Ahmad R, et al. Innovative approaches for microencapsulating bioactive compounds and probiotics: An updated review. J Food Process Preserv. 2022;46(11):e16935.

10.1111/jfpp.16935
12

Sikder MH, Hossen MJ, Matin MA, Rahman M, Ahmed MS, Asadazzuaman Md, et al. The role of macrophages in tuberculosis. In: Recent Advancements in Microbial Diversity. Elsevier; 2022. p.397-415.

10.1016/B978-0-12-822368-0.00017-7
13

Islam MI, Seo H, Kim S, Sadu VS, Lee KI, Song HY. Antimicrobial activity of IDD-B40 against drug-resistant Mycobacterium tuberculosis. Sci Rep. 2021;11(1):740.

10.1038/s41598-020-80227-y33436895PMC7804135
14

Plavsic M. Q5D Derivation and Characterization of Cell Substrates Used for Production of Biotechnological/Biological Products. In: ICH Quality Guidelines. Wiley; 2017. p.375-93.

10.1002/9781118971147.ch13
15

Kragh ML, Thykier M, Truelstrup Hansen L. A long-amplicon quantitative PCR assay with propidium monoazide to enumerate viable Listeria monocytogenes after heat and desiccation treatments. Food Microbiol. 2020;86:103310.

10.1016/j.fm.2019.10331031703859
16

Jang WS, Kim S, Podder B, Jyoti MA, Nam KW, Lee BE, et al. Anti-Mycobacterial Activity of Tamoxifen Against Drug-Resistant and Intra-Macrophage Mycobacterium tuberculosis. J Microbiol Biotechnol. 2015;25(6):946-950.

10.4014/jmb.1412.1202325639719
17

Changsen C, Franzblau SG, Palittapongarnpim P. Improved Green Fluorescent Protein Reporter Gene-Based Microplate Screening for Antituberculosis Compounds by Utilizing an Acetamidase Promoter. Antimicrob Agents Chemother. 2003 Dec;47(12):3682-3687.

10.1128/AAC.47.12.3682-3687.200314638465PMC296217
18

Jethva K, Bhatt DR, Zaveri MN. Antimycobacterial screening of selected medicinal plants against Mycobacterium tuberculosis H37Rv using agar dilution method and the microplate resazurin assay. Int J Mycobacteriol. 2020;9(2):150-155.

10.4103/ijmy.ijmy_60_2032474536
19

Halder D, Mandal M, Chatterjee SS, Pal NK, Mandal S. Indigenous Probiotic Lactobacillus Isolates Presenting Antibiotic like Activity against Human Pathogenic Bacteria. Biomedicines. 2017;5(2):31.

10.3390/biomedicines502003128621711PMC5489817
20

Goffin P, Deghorain M, Mainardi JL, Tytgat I, Champomier-Verges MC, Kleerebezem M, et al. Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum. J Bacteriol. 2005;187(19):6750-6761.

10.1128/JB.187.19.6750-6761.200516166538PMC1251571
21

Ahn YT, Kim GB, Lim KS, Baek YJ, Kim HU. Deconjugation of bile salts by Lactobacillus acidophilus isolates. Int Dairy J. 2003;13(4):303-311.

10.1016/S0958-6946(02)00174-7
22

Nachnani S, Scuteri A, Newman MG, Avanessian AB, Lomeli SL. E‐Test: A New Technique for Antimicrobial Susceptibility Testing for Periodontal Microorganisms. J Periodontol. 1992;63(7):576-583.

10.1902/jop.1992.63.7.5761324301
23

EFSA Panel on Additives and Products or Substances used in Animal Feed. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal. 2012;10(6):2740.

10.2903/j.efsa.2012.2740
24

Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW. Quantitative Reverse Transcription-Polymerase Chain Reaction to Study mRNA Decay: Comparison of Endpoint and Real-Time Methods. Anal Biochem. 2000;285(2):194-204.

10.1006/abio.2000.475311017702
25

Zerin T, Lee M, Jang WS, Nam KW, Song HY. Ursolic Acid Reduces Mycobacterium tuberculosis-Induced Nitric Oxide Release in Human Alveolar A549 cells. Mol Cells. 2015;38(7):610-615.

10.14348/molcells.2015.232826084752PMC4507026
26

Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch Toxicol. 2016;90(7):1585-1604.

10.1007/s00204-016-1727-627161440PMC4988520
27

Nguyen L, Pieters J. Mycobacterial Subversion of Chemotherapeutic Reagents and Host Defense Tactics: Challenges in Tuberculosis Drug Development. Annu Rev Pharmacol Toxicol. 2009;49:427-453.

10.1146/annurev-pharmtox-061008-10312319281311
28

Sheikhpour M, Delorme V, Kasaeian A, Amiri V, Masoumi M, Sadeghinia M, et al. An effective nano drug delivery and combination therapy for the treatment of Tuberculosis. Sci Rep. 2022;12(1):9591.

10.1038/s41598-022-13682-435688860PMC9185718
29

Sharma D, Sharma S, Sharma J. Potential strategies for the management of drug-resistant tuberculosis. J Glob Antimicrob Resist. 2020;22:210-214.

10.1016/j.jgar.2020.02.02932169684
30

Yu Z, Shen X, Wang A, Hu C, Chen J. The gut microbiome: A line of defense against tuberculosis development. Front Cell Infect Microbiol. 2023;13:1149679.

10.3389/fcimb.2023.114967937143744PMC10152471
31

Azad MAK, Sarker M, Li T, Yin J. Probiotic Species in the Modulation of Gut Microbiota: An Overview. Biomed Res Int. 2018;2018:9478630.

10.1155/2018/947863029854813PMC5964481
32

Ankrah AO, Glaudemans AWJM, Maes A, Van de Wiele C, Dierckx RAJO, Vorster M, et al. Tuberculosis. Semin Nucl Med. 2018;48(2):108-130.

10.1053/j.semnuclmed.2017.10.00529452616
33

Orme IM. A new unifying theory of the pathogenesis of tuberculosis. Tuberculosis. 2014;94(1):8-14.

10.1016/j.tube.2013.07.00424157189PMC3877201
34

Pan F, Zhao Y, Zhu S, Sun C, Lei L, Feng X, et al. Different Transcriptional Profiles of RAW264.7 Infected with Mycobacterium tuberculosis H37Rv and BCG Identified via Deep Sequencing. PLoS One. 2012;7(12):e51988.

10.1371/journal.pone.005198823284841PMC3526534
35

Takeuchi K, Frank JF. Confocal Microscopy and Microbial Viability Detection for Food Research. J Food Prot. 2001;64(12):2088-2102.

10.4315/0362-028X-64.12.208811770645
36

Erikstein BS, Hagland HR, Nikolaisen J, Kulawiec M, Singh KK, Gjertsen BT, et al. Cellular stress induced by resazurin leads to autophagy and cell death via production of reactive oxygen species and mitochondrial impairment. J Cell Biochem. 2010;111(3):574-584.

10.1002/jcb.2274120568117PMC2946440
37

FAO. FAO/WHO (2002). Guidelines for the evaluation of probiotics in food. Available at https://isappscience.org/wp-content/uploads/2019/04/probiotic_guidelines.pdf [accessed on 4 October 2024].

38

KMFDS. (2021). Guidelines for the safety evaluation of probiotics as functional ingredients in health functional foods.

39

Zhou JS, Pillidge CJ, Gopal PK, Gill HS. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int J Food Microbiol. 2005;98(2):211-217.

10.1016/j.ijfoodmicro.2004.05.01115681048
40

Teng O, Ang CKE, Guan XL. Macrophage-Bacteria Interactions-A Lipid-Centric Relationship. Front Immunol. 2017;8:1836.

10.3389/fimmu.2017.0183629326713PMC5742358
41

Aslantürk ÖS. In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. Genotoxicity-A predictable risk to our actual world. London: IntechOpen; 2018. p.64-80.

10.5772/intechopen.71923
42

Bae Y, Green ES, Kim GY, Song SJ, Mun JY, Lee S, et al. Dipeptide-functionalized polyamidoamine dendrimer-mediated apoptin gene delivery facilitates apoptosis of human primary glioma cells. Int J Pharm. 2016;515(1-2):186-200.

10.1016/j.ijpharm.2016.09.08327732896
43

Hussain H, Raj SL, Ahmad S, Abd. Fuat RM, Wan Mohamud WN, Bakar J, et al. Determination of cell viability using acridine orange/propidium iodide dual-spectrofluorometry assay. Cogent Food Agric. 2019;5(1):1582398.

10.1080/23311932.2019.1582398
44

Shahali A, Soltani R, Akbari V. Probiotic Lactobacillus and the potential risk of spreading antibiotic resistance: a systematic review. Res Pharm Sci. 2023;18(5):468-477.

10.4103/1735-5362.38370337842520PMC10568962
45

Berentsen S, Hill A, Hill QA, Tvedt THA, Michel M. Novel insights into the treatment of complement-mediated hemolytic anemias. Ther Adv Hematol. 2019;10:2040620719873321.

10.1177/204062071987332131523413PMC6734604
46

Sivamaruthi BS, Fern LA, Rashidah Pg Hj Ismail DSN, Chaiyasut C. The influence of probiotics on bile acids in diseases and aging. Biomed Pharmacother. 2020;128:110310.

10.1016/j.biopha.2020.11031032504921
47

Pavlović N, Stankov K, Mikov M. Probiotics-Interactions with Bile Acids and Impact on Cholesterol Metabolism. Appl Biochem Biotechnol. 2012;168(7):1880-1895.

10.1007/s12010-012-9904-423054820
48

Vella A, Farrugia G. D-Lactic Acidosis: Pathologic Consequence of Saprophytism. Mayo Clin Proc. 1998;73(5):451-456.

10.1016/S0025-6196(11)63729-49581587
49

Eslami M, Bahar A, Keikha M, Karbalaei M, Kobyliak NM, Yousefi B. Probiotics function and modulation of the immune system in allergic diseases. Allergol Immunopathol (Madr). 2020;48(6):771-788.

10.1016/j.aller.2020.04.00532763025
50

Liu Y, Wang J, Wu C. Microbiota and Tuberculosis: A Potential Role of Probiotics, and Postbiotics. Front Nutr. 2021;8:626254.

10.3389/fnut.2021.62625434026804PMC8138307
51

Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2(10):907-916.

10.1038/ni1001-90711577346
52

Chakravortty D, Hensel M. Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes Infect. 2003;5(7):621-627.

10.1016/S1286-4579(03)00096-012787738
Information
  • Publisher :The Korean Society for Microbiology and The Korean Society of Virology
  • Publisher(Ko) :대한미생물학회‧대한바이러스학회
  • Journal Title :JOURNAL OF BACTERIOLOGY AND VIROLOGY
  • Volume : 54
  • No :4
  • Pages :325-342
  • Received Date : 2024-09-04
  • Revised Date : 2024-11-15
  • Accepted Date : 2024-11-18