All Issue

2024 Vol.54, Issue 4 Preview Page

Original Article

31 December 2024. pp. 312-324
Abstract
References
1

Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4:18033.

10.1038/nrdp.2018.3329849094
2

GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400(10369):2221-2248.

3

Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov. 2017;16(7):457-471.

10.1038/nrd.2017.2328337021
4

Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol. 2007;3(9):541-548.

10.1038/nchembio.2007.2417710100
5

Allen RC, Popat R, Diggle SP, Brown SP. Targeting virulence: can we make evolution-proof drugs? Nat Rev Microbiol. 2014;12(4):300-308.

10.1038/nrmicro323224625893
6

Shin M, Jin Y, Park J, Mun D, Kim SR, Payne SM, et al. Characterization of an antibacterial agent targeting ferrous iron transport protein FeoB against Staphylococcus aureus and Gram-positive bacteria. ACS Chem Biol. 2021;16(1):136-149.

10.1021/acschembio.0c0084233378170
7

Bleul L, Francois P, Wolz C. Two-component systems of S. aureus: Signaling and sensing mechanisms. Genes (Basel). 2021;13(1):34.

10.3390/genes1301003435052374PMC8774646
8

Liu Q, Yeo WS, Bae T. The SaeRS two-component system of Staphylococcus aureus. Genes (Basel). 2016;7(10):81.

10.3390/genes710008127706107PMC5083920
9

Geiger T, Goerke C, Mainiero M, Kraus D, Wolz C. The virulence regulator Sae of Staphylococcus aureus: promoter activities and response to phagocytosis-related signals. J Bacteriol. 2008;190(10):3419-3428.

10.1128/JB.01927-0718344360PMC2395011
10

Cho H, Jeong DW, Liu Q, Yeo WS, Vogl T, Skaar EP, et al. Calprotectin increases the activity of the SaeRS two component system and murine mortality during Staphylococcus aureus infections. PLoS Pathog. 2015;11(7):e1005026.

10.1371/journal.ppat.100502626147796PMC4492782
11

Ohlsen K, Ziebuhr W, Koller KP, Hell W, Wichelhaus TA, Hacker J. Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother. 1998;42(11):2817-2823.

10.1128/AAC.42.11.28179797209PMC105949
12

Flack CE, Zurek OW, Meishery DD, Pallister KB, Malone CL, Horswill AR, et al. Differential regulation of staphylococcal virulence by the sensor kinase SaeS in response to neutrophil-derived stimuli. Proc Natl Acad Sci U S A. 2014;111(19):E2037-2045.

10.1073/pnas.132212511124782537PMC4024872
13

Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, et al. A Deep learning approach to antibiotic discovery. Cell. 2020;180(4):688-702.e13.

10.1016/j.cell.2020.01.02132084340PMC8349178
14

Deshpande RR, Tiwari AP, Nyayanit N, Modak M. In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2. Eur J Pharmacol. 2020;886:173430.

10.1016/j.ejphar.2020.17343032758569PMC7398085
15

Diniz RC, Soares LW, Nascimento da Silva LC. Virtual screening for the development of new effective compounds against Staphylococcus aureus. Curr Med Chem. 2018;25(42):5975-5985.

10.2174/092986732566618032710584229589530
16

Puri V, Nagpal M, Singh I, Singh M, Dhingra GA, Huanbutta K, et al. A comprehensive review on nutraceuticals: therapy support and formulation challenges. Nutrients. 2022;14(21):4637.

10.3390/nu1421463736364899PMC9654660
17

Kyme P, Thoennissen NH, Tseng CW, Thoennissen GB, Wolf AJ, Shimada K, et al. C/EBPε mediates nicotinamide-enhanced clearance of Staphylococcus aureus in mice. J Clin Invest. 2012;122(9):3316-3329.

10.1172/JCI6207022922257PMC3428083
18

Leitão AC, Ferreira TL, Gurgel do Amaral Valente Sá L, Rodrigues DS, de Souza BO, Barbosa AD, et al. Antibacterial activity of menadione alone and in combination with oxacillin against methicillin-resistant Staphylococcus aureus and its impact on biofilms. J Med Microbiol. 2023;72(9).

10.1099/jmm.0.00175137707372
19

Ahgilan A, Sabaratnam V, Periasamy V. Antimicrobial properties of vitamin B2. International Journal of Food Properties. 2016; 19(5):1173-1181.

10.1080/10942912.2015.1076459
20

Mal P, Dutta K, Bandyopadhyay D, Basu A, Khan R, Bishayi B. Azithromycin in combination with riboflavin decreases the severity of Staphylococcus aureus infection induced septic arthritis by modulating the production of free radicals and endogenous cytokines. Inflamm Res. 2013;62(3):259-273.

10.1007/s00011-012-0574-z23229721
21

Chen W, Zhang Y, Yeo WS, Bae T, Ji Q. Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 System. J Am Chem Soc. 2017;139(10):3790-3795.

10.1021/jacs.6b1331728218837
22

Mascher T. Bacterial (intramembrane-sensing) histidine kinases: signal transfer rather than stimulus perception. Trends Microbiol. 2014;22(10):559-565.

10.1016/j.tim.2014.05.00624947190
23

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461.

10.1002/jcc.2133419499576PMC3041641
24

Xue L, Chen YY, Yan Z, Lu W, Wan D, Zhu H. Staphyloxanthin: a potential target for antivirulence therapy. Infect Drug Resist. 2019;12:2151-2160.

10.2147/IDR.S19364931410034PMC6647007
25

Mumtaz S, Ali S, Tahir HM, Kazmi SAR, Mughal TA, Younas M. Evaluation of antibacterial activity of vitamin C against human bacterial pathogens. Braz J Biol. 2021;83:e247165.

10.1590/1519-6984.24716534468525
26

Mousavi S, Bereswill S, Heimesaat MM. Immunomodulatory and antimicrobial effects of vitamin C. Eur J Microbiol Immunol (Bp). 2019;9(3):73-79.

10.1556/1886.2019.0001631662885PMC6798581
27

Vilchèze C, Hartman T, Weinrick B, Jacobs WR Jr. Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat Commun. 2013;4:1881.

10.1038/ncomms289823695675PMC3698613
28

Farah N, Chin VK, Chong PP, Lim WF, Lim CW, Basir R, et al. Riboflavin as a promising antimicrobial agent? A multi-perspective review. Curr Res Microb Sci. 2022;3:100111.

10.1016/j.crmicr.2022.10011135199072PMC8848291
29

Li K, Wang XD, Yang SS, Gu J, Deng JY, Zhang XE. Anti-folates potentiate bactericidal effects of other antimicrobial agents. J Antibiot (Tokyo). 2017;70(3):285-291.

10.1038/ja.2016.15928074051
30

Mewies M, McIntire WS, Scrutton NS. Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs. Protein Sci. 1998; 7(1):7-20.

10.1002/pro.55600701029514256PMC2143808
31

Toyosawa T, Suzuki M, Kodama K, Araki S. Effects of intravenous infusion of highly purified vitamin B2 on lipopolysaccharide-induced shock and bacterial infection in mice. Eur J Pharmacol. 2004;492(2-3):273-280.

10.1016/j.ejphar.2004.04.00415178375
32

Shih CK, Chen CM, Chen CY, Liu JF, Lin HW, Chou HT, et al. Riboflavin protects mice against liposaccharide-induced shock through expression of heat shock protein 25. Food Chem Toxicol. 2010;48(7):1913-1918.

10.1016/j.fct.2010.04.03320430062
33

Mazur-Biały AI, Pocheć E, Plytycz B. Immunomodulatory effect of riboflavin deficiency and enrichment - reversible pathological response versus silencing of inflammatory activation. J Physiol Pharmacol. 2015;66(6):793-802.

34

Shahzad S, Ashraf MA, Sajid M, Shahzad A, Rafique A, Mahmood MS. Evaluation of synergistic antimicrobial effect of vitamins (A, B1, B2, B6, B12, C, D, E and K) with antibiotics against resistant bacterial strains. J Glob Antimicrob Resist. 2018;13:231-236.

10.1016/j.jgar.2018.01.00529408383
35

Lei J, Xin C, Xiao W, Chen W, Song Z. The promise of endogenous and exogenous riboflavin in anti-infection. Virulence. 2021;12(1):2314-2326.

10.1080/21505594.2021.196390934490839PMC8425684
36

Banerjee S, Ghosh D, Vishakha K, Das S, Mondal S, Ganguli A. Photodynamic antimicrobial chemotherapy (PACT) using riboflavin inhibits the mono and dual species biofilm produced by antibiotic resistant Staphylococcus aureus and Escherichia coli. Photodiagnosis Photodyn Ther. 2020;32:102002.

10.1016/j.pdpdt.2020.10200232916327
37

Schrier A, Greebel G, Attia H, Trokel S, Smith EF. In vitro antimicrobial efficacy of riboflavin and ultraviolet light on Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Pseudomonas aeruginosa. J Refract Surg. 2009;25(9):S799-802.

10.3928/1081597X-20090813-0719772254
38

Omae Y, Hanada Y, Sekimizu K, Kaito C. Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids. J Biol Chem. 2013;288(35):25542-25550.

10.1074/jbc.M113.49505123873929PMC3757215
39

Beard-Pegler MA, Stubbs E, Vickery AM. Observations on the resistance to drying of staphylococcal strains. J Med Microbiol. 1988;26(4):251-255.

10.1099/00222615-26-4-2513398031
40

Sakai K, Koyama N, Fukuda T, Mori Y, Onaka H, Tomoda H. Search method for inhibitors of Staphyloxanthin production by methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 2012;35(1):48-53.

10.1248/bpb.35.4822223336
41

Leejae S, Hasap L, Voravuthikunchai SP. Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. J Med Microbiol. 2013;62(Pt 3):421-428.

10.1099/jmm.0.047316-023242641
42

Liu CI, Liu GY, Song Y, Yin F, Hensler ME, Jeng WY, et al. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science. 2008;319(5868):1391-1394.

10.1126/science.115301818276850PMC2747771
43

Lee JH, Park JH, Cho MH, Lee J. Flavone reduces the production of virulence factors, staphyloxanthin and α-hemolysin, in Staphylococcus aureus. Curr Microbiol. 2012;65(6):726-732.

10.1007/s00284-012-0229-x22965624
44

Lee TY, Farah N, Chin VK, Lim CW, Chong PP, Basir R, et al. Medicinal benefits, biological, and nanoencapsulation functions of riboflavin with its toxicity profile: A narrative review. Nutr Res. 2023;119:1-20.

10.1016/j.nutres.2023.08.01037708600
Information
  • Publisher :The Korean Society for Microbiology and The Korean Society of Virology
  • Publisher(Ko) :대한미생물학회‧대한바이러스학회
  • Journal Title :JOURNAL OF BACTERIOLOGY AND VIROLOGY
  • Volume : 54
  • No :4
  • Pages :312-324
  • Received Date : 2024-09-26
  • Revised Date : 2024-11-04
  • Accepted Date : 2024-12-20