Original Article
Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4:18033.
10.1038/nrdp.2018.3329849094GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400(10369):2221-2248.
Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov. 2017;16(7):457-471.
10.1038/nrd.2017.2328337021Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol. 2007;3(9):541-548.
10.1038/nchembio.2007.2417710100Allen RC, Popat R, Diggle SP, Brown SP. Targeting virulence: can we make evolution-proof drugs? Nat Rev Microbiol. 2014;12(4):300-308.
10.1038/nrmicro323224625893Shin M, Jin Y, Park J, Mun D, Kim SR, Payne SM, et al. Characterization of an antibacterial agent targeting ferrous iron transport protein FeoB against Staphylococcus aureus and Gram-positive bacteria. ACS Chem Biol. 2021;16(1):136-149.
10.1021/acschembio.0c0084233378170Bleul L, Francois P, Wolz C. Two-component systems of S. aureus: Signaling and sensing mechanisms. Genes (Basel). 2021;13(1):34.
10.3390/genes1301003435052374PMC8774646Liu Q, Yeo WS, Bae T. The SaeRS two-component system of Staphylococcus aureus. Genes (Basel). 2016;7(10):81.
10.3390/genes710008127706107PMC5083920Geiger T, Goerke C, Mainiero M, Kraus D, Wolz C. The virulence regulator Sae of Staphylococcus aureus: promoter activities and response to phagocytosis-related signals. J Bacteriol. 2008;190(10):3419-3428.
10.1128/JB.01927-0718344360PMC2395011Cho H, Jeong DW, Liu Q, Yeo WS, Vogl T, Skaar EP, et al. Calprotectin increases the activity of the SaeRS two component system and murine mortality during Staphylococcus aureus infections. PLoS Pathog. 2015;11(7):e1005026.
10.1371/journal.ppat.100502626147796PMC4492782Ohlsen K, Ziebuhr W, Koller KP, Hell W, Wichelhaus TA, Hacker J. Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother. 1998;42(11):2817-2823.
10.1128/AAC.42.11.28179797209PMC105949Flack CE, Zurek OW, Meishery DD, Pallister KB, Malone CL, Horswill AR, et al. Differential regulation of staphylococcal virulence by the sensor kinase SaeS in response to neutrophil-derived stimuli. Proc Natl Acad Sci U S A. 2014;111(19):E2037-2045.
10.1073/pnas.132212511124782537PMC4024872Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, et al. A Deep learning approach to antibiotic discovery. Cell. 2020;180(4):688-702.e13.
10.1016/j.cell.2020.01.02132084340PMC8349178Deshpande RR, Tiwari AP, Nyayanit N, Modak M. In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2. Eur J Pharmacol. 2020;886:173430.
10.1016/j.ejphar.2020.17343032758569PMC7398085Diniz RC, Soares LW, Nascimento da Silva LC. Virtual screening for the development of new effective compounds against Staphylococcus aureus. Curr Med Chem. 2018;25(42):5975-5985.
10.2174/092986732566618032710584229589530Puri V, Nagpal M, Singh I, Singh M, Dhingra GA, Huanbutta K, et al. A comprehensive review on nutraceuticals: therapy support and formulation challenges. Nutrients. 2022;14(21):4637.
10.3390/nu1421463736364899PMC9654660Kyme P, Thoennissen NH, Tseng CW, Thoennissen GB, Wolf AJ, Shimada K, et al. C/EBPε mediates nicotinamide-enhanced clearance of Staphylococcus aureus in mice. J Clin Invest. 2012;122(9):3316-3329.
10.1172/JCI6207022922257PMC3428083Leitão AC, Ferreira TL, Gurgel do Amaral Valente Sá L, Rodrigues DS, de Souza BO, Barbosa AD, et al. Antibacterial activity of menadione alone and in combination with oxacillin against methicillin-resistant Staphylococcus aureus and its impact on biofilms. J Med Microbiol. 2023;72(9).
10.1099/jmm.0.00175137707372Ahgilan A, Sabaratnam V, Periasamy V. Antimicrobial properties of vitamin B2. International Journal of Food Properties. 2016; 19(5):1173-1181.
10.1080/10942912.2015.1076459Mal P, Dutta K, Bandyopadhyay D, Basu A, Khan R, Bishayi B. Azithromycin in combination with riboflavin decreases the severity of Staphylococcus aureus infection induced septic arthritis by modulating the production of free radicals and endogenous cytokines. Inflamm Res. 2013;62(3):259-273.
10.1007/s00011-012-0574-z23229721Chen W, Zhang Y, Yeo WS, Bae T, Ji Q. Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 System. J Am Chem Soc. 2017;139(10):3790-3795.
10.1021/jacs.6b1331728218837Mascher T. Bacterial (intramembrane-sensing) histidine kinases: signal transfer rather than stimulus perception. Trends Microbiol. 2014;22(10):559-565.
10.1016/j.tim.2014.05.00624947190Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461.
10.1002/jcc.2133419499576PMC3041641Xue L, Chen YY, Yan Z, Lu W, Wan D, Zhu H. Staphyloxanthin: a potential target for antivirulence therapy. Infect Drug Resist. 2019;12:2151-2160.
10.2147/IDR.S19364931410034PMC6647007Mumtaz S, Ali S, Tahir HM, Kazmi SAR, Mughal TA, Younas M. Evaluation of antibacterial activity of vitamin C against human bacterial pathogens. Braz J Biol. 2021;83:e247165.
10.1590/1519-6984.24716534468525Mousavi S, Bereswill S, Heimesaat MM. Immunomodulatory and antimicrobial effects of vitamin C. Eur J Microbiol Immunol (Bp). 2019;9(3):73-79.
10.1556/1886.2019.0001631662885PMC6798581Vilchèze C, Hartman T, Weinrick B, Jacobs WR Jr. Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat Commun. 2013;4:1881.
10.1038/ncomms289823695675PMC3698613Farah N, Chin VK, Chong PP, Lim WF, Lim CW, Basir R, et al. Riboflavin as a promising antimicrobial agent? A multi-perspective review. Curr Res Microb Sci. 2022;3:100111.
10.1016/j.crmicr.2022.10011135199072PMC8848291Li K, Wang XD, Yang SS, Gu J, Deng JY, Zhang XE. Anti-folates potentiate bactericidal effects of other antimicrobial agents. J Antibiot (Tokyo). 2017;70(3):285-291.
10.1038/ja.2016.15928074051Mewies M, McIntire WS, Scrutton NS. Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs. Protein Sci. 1998; 7(1):7-20.
10.1002/pro.55600701029514256PMC2143808Toyosawa T, Suzuki M, Kodama K, Araki S. Effects of intravenous infusion of highly purified vitamin B2 on lipopolysaccharide-induced shock and bacterial infection in mice. Eur J Pharmacol. 2004;492(2-3):273-280.
10.1016/j.ejphar.2004.04.00415178375Shih CK, Chen CM, Chen CY, Liu JF, Lin HW, Chou HT, et al. Riboflavin protects mice against liposaccharide-induced shock through expression of heat shock protein 25. Food Chem Toxicol. 2010;48(7):1913-1918.
10.1016/j.fct.2010.04.03320430062Mazur-Biały AI, Pocheć E, Plytycz B. Immunomodulatory effect of riboflavin deficiency and enrichment - reversible pathological response versus silencing of inflammatory activation. J Physiol Pharmacol. 2015;66(6):793-802.
Shahzad S, Ashraf MA, Sajid M, Shahzad A, Rafique A, Mahmood MS. Evaluation of synergistic antimicrobial effect of vitamins (A, B1, B2, B6, B12, C, D, E and K) with antibiotics against resistant bacterial strains. J Glob Antimicrob Resist. 2018;13:231-236.
10.1016/j.jgar.2018.01.00529408383Lei J, Xin C, Xiao W, Chen W, Song Z. The promise of endogenous and exogenous riboflavin in anti-infection. Virulence. 2021;12(1):2314-2326.
10.1080/21505594.2021.196390934490839PMC8425684Banerjee S, Ghosh D, Vishakha K, Das S, Mondal S, Ganguli A. Photodynamic antimicrobial chemotherapy (PACT) using riboflavin inhibits the mono and dual species biofilm produced by antibiotic resistant Staphylococcus aureus and Escherichia coli. Photodiagnosis Photodyn Ther. 2020;32:102002.
10.1016/j.pdpdt.2020.10200232916327Schrier A, Greebel G, Attia H, Trokel S, Smith EF. In vitro antimicrobial efficacy of riboflavin and ultraviolet light on Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Pseudomonas aeruginosa. J Refract Surg. 2009;25(9):S799-802.
10.3928/1081597X-20090813-0719772254Omae Y, Hanada Y, Sekimizu K, Kaito C. Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids. J Biol Chem. 2013;288(35):25542-25550.
10.1074/jbc.M113.49505123873929PMC3757215Beard-Pegler MA, Stubbs E, Vickery AM. Observations on the resistance to drying of staphylococcal strains. J Med Microbiol. 1988;26(4):251-255.
10.1099/00222615-26-4-2513398031Sakai K, Koyama N, Fukuda T, Mori Y, Onaka H, Tomoda H. Search method for inhibitors of Staphyloxanthin production by methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 2012;35(1):48-53.
10.1248/bpb.35.4822223336Leejae S, Hasap L, Voravuthikunchai SP. Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. J Med Microbiol. 2013;62(Pt 3):421-428.
10.1099/jmm.0.047316-023242641Liu CI, Liu GY, Song Y, Yin F, Hensler ME, Jeng WY, et al. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science. 2008;319(5868):1391-1394.
10.1126/science.115301818276850PMC2747771- Publisher :The Korean Society for Microbiology and The Korean Society of Virology
- Publisher(Ko) :대한미생물학회‧대한바이러스학회
- Journal Title :JOURNAL OF BACTERIOLOGY AND VIROLOGY
- Volume : 54
- No :4
- Pages :312-324
- Received Date : 2024-09-26
- Revised Date : 2024-11-04
- Accepted Date : 2024-12-20
- DOI :https://doi.org/10.4167/jbv.2024.54.4.312