All Issue

2024 Vol.54, Issue 3

Review Article

30 September 2024. pp. 167-190
Abstract
References
1

World Health Organization. Global tuberculosis report 2023. Geneva. 2023.

2

Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol. 2022;20(12):750-766.

10.1038/s41579-022-00763-4
3

Passos BBS, Araujo-Pereira M, Vinhaes CL, Amaral EP, Andrade BB. The role of ESAT-6 in tuberculosis immunopathology. Front Immunol. 2024;15:1383098.

10.3389/fimmu.2024.1383098
4

Ramon-Luing LA, Palacios Y, Ruiz A, Tellez-Navarrete NA, Chavez-Galan L. Virulence factors of Mycobacterium tuberculosis as modulators of cell death mechanisms. Pathogens. 2023;12(6):839.

10.3390/pathogens12060839
5

Romagnoli A, Etna MP, Giacomini E, Pardini M, Remoli ME, Corazzari M, et al. ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy. 2012;8(9):1357-1370.

10.4161/auto.20881
6

Tiwari S, Casey R, Goulding CW, Hingley-Wilson S, Jacobs WR Jr. Infect and inject: How Mycobacterium tuberculosis exploits its major virulence-associated Type VII secretion system, ESX-1. Microbiol Spectr. 2019;7(3).

10.1128/microbiolspec.BAI-0024-2019
7

Saini S, Gangwar A, Sharma R. Harnessing host-pathogen interactions for innovative drug discovery and host-directed therapeutics to tackle tuberculosis. Microbiol Res. 2023;275:127466.

10.1016/j.micres.2023.127466
8

Orgeur M, Sous C, Madacki J, Brosch R. Evolution and emergence of Mycobacterium tuberculosis. FEMS Microbiol Rev. 2024;48(2):fuae006.

10.1093/femsre/fuae006
9

Franco-Paredes C, Marcos LA, Henao-Martinez AF, Rodriguez-Morales AJ, Villamil-Gomez WE, Gotuzzo E, et al. Cutaneous mycobacterial infections. Clin Microbiol Rev. 2018;32(1):e00069-18.

10.1128/CMR.00069-18
10

Moule MG, Cirillo JD. Mycobacterium tuberculosis dissemination plays a critical role in pathogenesis. Front Cell Infect Microbiol. 2020;10:65.

10.3389/fcimb.2020.00065
11

Zumla A, Chakaya J, Centis R, D'Ambrosio L, Mwaba P, Bates M, et al. Tuberculosis treatment and management--an update on treatment regimens, trials, new drugs, and adjunct therapies. Lancet Respir Med. 2015;3(3):220-234.

10.1016/S2213-2600(15)00063-6
12

Dulberger CL, Rubin EJ, Boutte CC. The mycobacterial cell envelope - a moving target. Nat Rev Microbiol. 2020;18(1):47-59.

10.1038/s41579-019-0273-7
13

Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T. Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol. 2020;128:1547-1567.

10.1111/jam.14478
14

Imaeda T, Kanetsuna F, Galindo B. Ultrastructure of cell walls of genus Mycobacterium. J Ultrastruct Res. 1968;25(1):46-63.

10.1016/S0022-5320(68)80059-0
15

Winder FG, Collins PB. Inhibition by isoniazid of synthesis of mycolic acids in Mycobacterium tuberculosis. J Gen Microbiol. 1970;63(1):41-48.

10.1099/00221287-63-1-41
16

Abrahams KA, Besra GS. Synthesis and recycling of the mycobacterial cell envelope. Curr Opin Microbiol. 2021;60:58-65.

10.1016/j.mib.2021.01.012
17

Francis RJ, Robb G, McCann L, Khatri B, Keeble J, Dagg B, et al. Three-dimensional in situ morphometrics of Mycobacterium tuberculosis infection within lesions by optical mesoscopy and novel acid-fast staining. Sci Rep. 2020;10(1):21774.

10.1038/s41598-020-78640-4
18

Frando A, Boradia V, Grundner C. Regulatory intersection of two-component system and Ser/Thr protein kinase signaling in Mycobacterium tuberculosis. J Mol Biol. 2024;436(2):168379.

10.1016/j.jmb.2023.168379
19

Oh Y, Lee HN, Ko EM, Jeong JA, Park SW, Oh JI. Mycobacterial regulatory systems involved in the regulation of gene expression under respiration-inhibitory conditions. J Microbiol. 2023;61(3):297-315.

10.1007/s12275-023-00026-8
20

Roy S, Ghatak D, Das P, BoseDasgupta S. ESX secretion system: The gatekeepers of mycobacterial survivability and pathogenesis. Eur J Microbiol Immunol (Bp). 2020;10(4):202-209.

10.1556/1886.2020.00028
21

Stupar M, Furness J, De Voss CJ, Tan L, West NP. Two-component sensor histidine kinases of Mycobacterium tuberculosis: Beacons for niche navigation. Mol Microbiol. 2022;117(5):973-985.

10.1111/mmi.14899
22

Frando A, Grundner C. More than two components: complexities in bacterial phosphosignaling. mSystems. 2024;9(5):e0028924.

10.1128/msystems.00289-24
23

Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res. 2024;284:127675.

10.1016/j.micres.2024.127675
24

Verma A, Ghoshal A, Dwivedi VP, Bhaskar A. Tuberculosis: The success tale of less explored dormant Mycobacterium tuberculosis. Front Cell Infect Microbiol. 2022;12:1079569.

10.3389/fcimb.2022.1079569
25

Kundu M, Basu J. Applications of transcriptomics and proteomics for understanding dormancy and resuscitation in Mycobacterium tuberculosis. Front Microbiol. 2021;12:642487.

10.3389/fmicb.2021.642487
26

Kim MJ, Park KJ, Ko IJ, Kim YM, Oh JI. Different roles of DosS and DosT in the hypoxic adaptation of Mycobacteria. J Bacteriol. 2010;192(19):4868-4875.

10.1128/JB.00550-10
27

Yuan Y, Crane DD, Simpson RM, Zhu YQ, Hickey MJ, Sherman DR, et al. The 16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc Natl Acad Sci U S A. 1998;95(16):9578-9583.

10.1073/pnas.95.16.9578
28

Karbalaei M, Mosavat A, Soleimanpour S, Farsiani H, Ghazvini K, Amini AA, et al. Production and evaluation of Ag85B:HspX:hFcgamma1 immunogenicity as an Fc fusion recombinant multi-stage vaccine candidate against Mycobacterium tuberculosis. Curr Microbiol. 2024;81(5):127.

10.1007/s00284-024-03655-3
29

Mansury D, Ghazvini K, Amel Jamehdar S, Badiee A, Tafaghodi M, Nikpoor AR, et al. Increasing cellular immune response in liposomal formulations of DOTAP encapsulated by fusion protein Hspx, PPE44, and EsxV, as a potential tuberculosis vaccine candidate. Rep Biochem Mol Biol. 2019;7(2):156-166.

30

Liu W, Li J, Niu H, Lin X, Li R, Wang Y, et al. Immunogenicity and protective efficacy of multistage vaccine candidates (Mtb8.4-HspX and HspX-Mtb8.4) against Mycobacterium tuberculosis infection in mice. Int Immunopharmacol. 2017;53:83-89.

10.1016/j.intimp.2017.10.015
31

Dheda K, Mirzayev F, Cirillo DM, Udwadia Z, Dooley KE, Chang KC, et al. Multidrug-resistant tuberculosis. Nat Rev Dis Primers. 2024;10(1):22.

10.1038/s41572-024-00504-2
32

Grobbel HP, Merker M, Kohler N, Andres S, Hoffmann H, Heyckendorf J, et al. Design of multidrug-resistant tuberculosis treatment regimens based on DNA sequencing. Clin Infect Dis. 2021;73(7):1194-1202.

10.1093/cid/ciab359
33

The Economist Inteligence Unit. It's time to end drug-resistant tuberculosis. The Economist. 2019. Available at https://www.eiu.com/graphics/marketing/pdf/its-time-to-end-drug-resistant-tuberculosis-full-report.pdf. [accessed on 22 July 2024].

34

Ahmed S, Raqib R, Guethmundsson GH, Bergman P, Agerberth B, Rekha RS. Host-directed therapy as a novel treatment strategy to overcome tuberculosis: targeting immune modulation. Antibiotics (Basel). 2020;9(1):21.

10.3390/antibiotics9010021
35

Ayodele S, Kumar P, van Eyk A, Choonara YE. Advances in immunomodulatory strategies for host-directed therapies in combating tuberculosis. Biomed Pharmacother. 2023;162:114588.

10.1016/j.biopha.2023.114588
36

Kiran D, Podell BK, Chambers M, Basaraba RJ. Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. Semin Immunopathol. 2016;38(2):167-183.

10.1007/s00281-015-0537-x
37

Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol. 2012;12(5):352-366.

10.1038/nri3211
38

Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell. 2009;136(1):37-49.

10.1016/j.cell.2008.11.014
39

Weeratunga P, Moller DR, Ho LP. Immune mechanisms of granuloma formation in sarcoidosis and tuberculosis. J Clin Invest. 2024;134(1):e175264.

10.1172/JCI175264
40

Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity. 2002;17(6):693-702.

10.1016/S1074-7613(02)00475-2
41

Belton M, Brilha S, Manavaki R, Mauri F, Nijran K, Hong YT, et al. Hypoxia and tissue destruction in pulmonary TB. Thorax. 2016;71(12):1145-1153.

10.1136/thoraxjnl-2015-207402
42

Rabinowitz JD, Enerback S. Lactate: the ugly duckling of energy metabolism. Nat Metab. 2020;2(7):566-571.

10.1038/s42255-020-0243-4
43

Emad A, Rezaian GR. Lactate dehydrogenase in bronchoalveolar lavage fluid of patients with active pulmonary tuberculosis. Respiration. 1999;66(1):41-45.

10.1159/000029335
44

Sharma PR, Jain S, Bamezai RN, Tiwari PK. Utility of serum LDH isoforms in the assessment of Mycobacterium tuberculosis induced pathology in TB patients of Sahariya tribe. Indian J Clin Biochem. 2010;25(1):57-63.

10.1007/s12291-010-0012-3
45

Osada-Oka M, Goda N, Saiga H, Yamamoto M, Takeda K, Ozeki Y, et al. Metabolic adaptation to glycolysis is a basic defense mechanism of macrophages for Mycobacterium tuberculosis infection. Int Immunol. 2019;31(12):781-793.

10.1093/intimm/dxz048
46

Elkington PT, D'Armiento JM, Friedland JS. Tuberculosis immunopathology: the neglected role of extracellular matrix destruction. Sci Transl Med. 2011;3(71):71ps6.

10.1126/scitranslmed.3001847
47

Li Y, Wang Y, Liu X. The role of airway epithelial cells in response to mycobacteria infection. Clin Dev Immunol. 2012;2012:791392.

10.1155/2012/791392
48

Ghio AJ, Carter JD, Dailey LA, Devlin RB, Samet JM. Respiratory epithelial cells demonstrate lactoferrin receptors that increase after metal exposure. Am J Physiol. 1999;276(6):L933-40.

10.1152/ajplung.1999.276.6.L933
49

Doss M, White MR, Tecle T, Hartshorn KL. Human defensins and LL-37 in mucosal immunity. J Leukoc Biol. 2010;87(1):79-92.

10.1189/jlb.0609382
50

Elkington PT, Emerson JE, Lopez-Pascua LD, O'Kane CM, Horncastle DE, Boyle JJ, et al. Mycobacterium tuberculosis up-regulates matrix metalloproteinase-1 secretion from human airway epithelial cells via a p38 MAPK switch. J Immunol. 2005;175(8):5333-5340.

10.4049/jimmunol.175.8.5333
51

Hiemstra PS. Epithelial antimicrobial peptides and proteins: their role in host defence and inflammation. Paediatr Respir Rev. 2001;2(4):306-310.

10.1053/prrv.2001.0165
52

Lutay N, Hakansson G, Alaridah N, Hallgren O, Westergren-Thorsson G, Godaly G. Mycobacteria bypass mucosal NF-kB signalling to induce an epithelial anti-inflammatory IL-22 and IL-10 response. PLoS One. 2014;9(1):e86466.

10.1371/journal.pone.0086466
53

Kinhikar AG, Verma I, Chandra D, Singh KK, Weldingh K, Andersen P, et al. Potential role for ESAT6 in dissemination of M. tuberculosis via human lung epithelial cells. Mol Microbiol. 2010;75(1):92-106.

10.1111/j.1365-2958.2009.06959.x
54

Mai J, Virtue A, Shen J, Wang H, Yang XF. An evolving new paradigm: endothelial cells--conditional innate immune cells. J Hematol Oncol. 2013;6:61.

10.1186/1756-8722-6-61
55

Baltierra-Uribe SL, Garcia-Vasquez Mde J, Castrejon-Jimenez NS, Estrella-Pinon MP, Luna-Herrera J, Garcia-Perez BE. Mycobacteria entry and trafficking into endothelial cells. Can J Microbiol. 2014;60(9):569-577.

10.1139/cjm-2014-0087
56

Garcia-Perez BE, Villagomez-Palatto DA, Castaneda-Sanchez JI, Coral-Vazquez RM, Ramirez-Sanchez I, Ordonez-Razo RM, et al. Innate response of human endothelial cells infected with mycobacteria. Immunobiology. 2011;216(8):925-935.

10.1016/j.imbio.2011.01.004
57

Lerner TR, Queval CJ, Fearns A, Repnik U, Griffiths G, Gutierrez MG. Phthiocerol dimycocerosates promote access to the cytosol and intracellular burden of Mycobacterium tuberculosis in lymphatic endothelial cells. BMC Biol. 2018;16(1):1.

10.1186/s12915-017-0471-6
58

East L, Isacke CM. The mannose receptor family. Biochim Biophys Acta. 2002;1572(2-3):364-386.

10.1016/S0304-4165(02)00319-7
59

Polena H, Boudou F, Tilleul S, Dubois-Colas N, Lecointe C, Rakotosamimanana N, et al. Mycobacterium tuberculosis exploits the formation of new blood vessels for its dissemination. Sci Rep. 2016;6:33162.

10.1038/srep33162
60

Saghazadeh A, Rezaei N. Vascular endothelial growth factor levels in tuberculosis: A systematic review and meta-analysis. PLoS One. 2022;17(5):e0268543.

10.1371/journal.pone.0268543
61

Matsuyama W, Hashiguchi T, Matsumuro K, Iwami F, Hirotsu Y, Kawabata M, et al. Increased serum level of vascular endothelial growth factor in pulmonary tuberculosis. Am J Respir Crit Care Med. 2000;162(3 Pt 1):1120-1122.

10.1164/ajrccm.162.3.9911010
62

Alatas F, Alatas O, Metintas M, Ozarslan A, Erginel S, Yildirim H. Vascular endothelial growth factor levels in active pulmonary tuberculosis. Chest. 2004;125(6):2156-2159.

10.1378/chest.125.6.2156
63

Datta M, Via LE, Kamoun WS, Liu C, Chen W, Seano G, et al. Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc Natl Acad Sci U S A. 2015;112(6):1827-1832.

10.1073/pnas.1424563112
64

Harding J, Ritter A, Rayasam A, Fabry Z, Sandor M. Lymphangiogenesis is induced by mycobacterial granulomas via vascular endothelial growth factor receptor-3 and supports systemic T-cell responses against mycobacterial antigen. Am J Pathol. 2015;185(2):432-445.

10.1016/j.ajpath.2014.09.020
65

Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518(7540):547-551.

10.1038/nature13989
66

Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, See P, et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity. 2015;42(4):665-678.

10.1016/j.immuni.2015.03.011
67

Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease. Immunity. 2022;55(9):1564-1580.

10.1016/j.immuni.2022.08.010
68

Huang L, Nazarova EV, Tan S, Liu Y, Russell DG. Growth of Mycobacterium tuberculosisin vivo segregates with host macrophage metabolism and ontogeny. J Exp Med. 2018;215(4):1135-1152.

10.1084/jem.20172020
69

Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23-35.

10.1038/nri978
70

Cohen SB, Gern BH, Delahaye JL, Adams KN, Plumlee CR, Winkler JK, et al. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe. 2018;24(3):439-446. e4.

10.1016/j.chom.2018.08.001
71

Redente EF, Higgins DM, Dwyer-Nield LD, Orme IM, Gonzalez-Juarrero M, Malkinson AM. Differential polarization of alveolar macrophages and bone marrow-derived monocytes following chemically and pathogen-induced chronic lung inflammation. J Leukoc Biol. 2010;88(1):159-168.

10.1189/jlb.0609378
72

Blumenthal A, Kobayashi T, Pierini LM, Banaei N, Ernst JD, Miyake K, et al. RP105 facilitates macrophage activation by Mycobacterium tuberculosis lipoproteins. Cell Host Microbe. 2009;5(1):35-46.

10.1016/j.chom.2008.12.002
73

Sha S, Shi Y, Tang Y, Jia L, Han X, Liu Y, et al. Mycobacterium tuberculosis Rv1987 protein induces M2 polarization of macrophages through activating the PI3K/Akt1/mTOR signaling pathway. Immunol Cell Biol. 2021;99(6):570-585.

10.1111/imcb.12436
74

Gong Z, Han S, Liang T, Zhang H, Sun Q, Pan H, et al. Mycobacterium tuberculosis effector PPE36 attenuates host cytokine storm damage via inhibiting macrophage M1 polarization. J Cell Physiol. 2021;236(11):7405-7420.

10.1002/jcp.30411
75

Guo Q, Bi J, Li M, Ge W, Xu Y, Fan W, et al. ESX secretion-associated protein C from Mycobacterium tuberculosis induces macrophage activation through the toll-like receptor-4/mitogen-activated protein kinase signaling pathway. Front Cell Infect Microbiol. 2019;9:158.

10.3389/fcimb.2019.00158
76

Ahmad F, Rani A, Alam A, Zarin S, Pandey S, Singh H, et al. Macrophage: a cell with many faces and functions in Tuberculosis. Front Immunol. 2022;13:747799.

10.3389/fimmu.2022.747799
77

Marino S, Cilfone NA, Mattila JT, Linderman JJ, Flynn JL, Kirschner DE. Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection. Infect Immun. 2015;83(1):324-338.

10.1128/IAI.02494-14
78

Bo H, Moure UAE, Yang Y, Pan J, Li L, Wang M, et al. Mycobacterium tuberculosis-macrophage interaction: molecular updates. Front Cell Infect Microbiol. 2023;13:1062963.

10.3389/fcimb.2023.1062963
79

Songane M, Kleinnijenhuis J, Netea MG, van Crevel R. The role of autophagy in host defence against Mycobacterium tuberculosis infection. Tuberculosis (Edinb). 2012;92(5):388-396.

10.1016/j.tube.2012.05.004
80

Lee J, Hartman M, Kornfeld H. Macrophage apoptosis in tuberculosis. Yonsei Med J. 2009;50(1):1-11.

10.3349/ymj.2009.50.1.1
81

Feng Y, Li M, Yangzhong X, Zhang X, Zu A, Hou Y, et al. Pyroptosis in inflammation-related respiratory disease. J Physiol Biochem. 2022;78(4):721-737.

10.1007/s13105-022-00909-1
82

Shin DM, Jeon BY, Lee HM, Jin HS, Yuk JM, Song CH, et al. Mycobacterium tuberculosis Eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog. 2010;6(12):e1001230.

10.1371/journal.ppat.1001230
83

Duan L, Yi M, Chen J, Li S, Chen W. Mycobacterium tuberculosis eis gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3. Biochem Biophys Res Commun. 2016;473(4):1229-1234.

10.1016/j.bbrc.2016.04.045
84

Singh A, Crossman DK, Mai D, Guidry L, Voskuil MI, Renfrow MB, et al. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog. 2009;5(8):e1000545.

10.1371/journal.ppat.1000545
85

Moideen K, Kumar NP, Nair D, Banurekha VV, Bethunaickan R, Babu S. Heightened systemic levels of neutrophil and eosinophil granular proteins in pulmonary tuberculosis and reversal following treatment. Infect Immun. 2018;86(6):e00008-18.

10.1128/IAI.00008-18
86

Monteith AJ, Miller JM, Maxwell CN, Chazin WJ, Skaar EP. Neutrophil extracellular traps enhance macrophage killing of bacterial pathogens. Sci Adv. 2021;7(37):eabj2101.

10.1126/sciadv.abj2101
87

Blomgran R, Desvignes L, Briken V, Ernst JD. Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe. 2012;11(1):81-90.

10.1016/j.chom.2011.11.012
88

Corleis B, Korbel D, Wilson R, Bylund J, Chee R, Schaible UE. Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils. Cell Microbiol. 2012;14(7):1109-1121.

10.1111/j.1462-5822.2012.01783.x
89

Repasy T, Martinez N, Lee J, West K, Li W, Kornfeld H. Bacillary replication and macrophage necrosis are determinants of neutrophil recruitment in tuberculosis. Microbes Infect. 2015;17(8):564-574.

10.1016/j.micinf.2015.03.013
90

Dallenga T, Repnik U, Corleis B, Eich J, Reimer R, Griffiths GW, et al. M. tuberculosis-induced necrosis of infected neutrophils promotes bacterial growth following phagocytosis by macrophages. Cell Host Microbe. 2017;22(4):519-530. e3.

10.1016/j.chom.2017.09.003
91

Filio-Rodriguez G, Estrada-Garcia I, Arce-Paredes P, Moreno-Altamirano MM, Islas-Trujillo S, Ponce-Regalado MD, et al. In vivo induction of neutrophil extracellular traps by Mycobacterium tuberculosis in a guinea pig model. Innate Immun. 2017;23(7):625-637.

10.1177/1753425917732406
92

Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J 3rd, Fae KC, et al. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J Clin Invest. 2014;124(3):1268-1282.

10.1172/JCI72030
93

Kim TS, Jin YB, Kim YS, Kim S, Kim JK, Lee HM, et al. SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions. Autophagy. 2019;15(8):1356-1375.

10.1080/15548627.2019.1582743
94

Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med. 2003;197(1):7-17.

10.1084/jem.20021229
95

Chieppa M, Bianchi G, Doni A, Del Prete A, Sironi M, Laskarin G, et al. Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J Immunol. 2003;171(9):4552-60.

10.4049/jimmunol.171.9.4552
96

Magallanes-Puebla A, Espinosa-Cueto P, Lopez-Marin LM, Mancilla R. Mycobacterial glycolipid Di-O-acyl trehalose promotes a tolerogenic profile in dendritic cells. PLoS One. 2018;13(12):e0207202.

10.1371/journal.pone.0207202
97

Sondergaard JN, Laursen JM, Rosholm LB, Brix S. Mycobacterium tuberculosis promotes Th17 expansion via regulation of human dendritic cells toward a high CD14 and low IL-12p70 phenotype that reprograms upon exogenous IFN-gamma. Int Immunol. 2014;26(12):705-716.

10.1093/intimm/dxu085
98

Cadena AM, Fortune SM, Flynn JL. Heterogeneity in tuberculosis. Nat Rev Immunol. 2017;17(11):691-702.

10.1038/nri.2017.69
99

Ulrichs T, Kosmiadi GA, Jorg S, Pradl L, Titukhina M, Mishenko V, et al. Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma. J Infect Dis. 2005;192(1)):89-97.

10.1086/430621
100

Caruso AM, Serbina N, Klein E, Triebold K, Bloom BR, Flynn JL. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J Immunol. 1999;162(9):5407-5416.

10.4049/jimmunol.162.9.5407
101

Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity. 1995;2(6):561-572.

10.1016/1074-7613(95)90001-2
102

Ansari AW, Kamarulzaman A, Schmidt RE. Multifaceted impact of host C-C chemokine CCL2 in the immuno-pathogenesis of HIV-1/M. tuberculosis co-infection. Front Immunol. 2013;4:312.

10.3389/fimmu.2013.00312
103

Diedrich CR, O'Hern J, Wilkinson RJ. HIV-1 and the Mycobacterium tuberculosis granuloma: A systematic review and meta-analysis. Tuberculosis (Edinb). 2016;98:62-76.

10.1016/j.tube.2016.02.010
104

Lu YJ, Barreira-Silva P, Boyce S, Powers J, Cavallo K, Behar SM. CD4 T cell help prevents CD8 T cell exhaustion and promotes control of Mycobacterium tuberculosis infection. Cell Rep. 2021;36(11):109696.

10.1016/j.celrep.2021.109696
105

Serbina NV, Liu CC, Scanga CA, Flynn JL. CD8+ CTL from lungs of Mycobacterium tuberculosis-infected mice express perforin in vivo and lyse infected macrophages. J Immunol. 2000;165(1):353-363.

10.4049/jimmunol.165.1.353
106

Chavez-Galan L, Illescas-Eugenio J, Alvarez-Sekely M, Baez-Saldana R, Chavez R, Lascurain R. Tuberculosis patients display a high proportion of CD8(+) T cells with a high cytotoxic potential. Microbiol Immunol. 2019;63(8):316-327.

10.1111/1348-0421.12724
107

Shafiani S, Tucker-Heard G, Kariyone A, Takatsu K, Urdahl KB. Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med. 2010;207(7):1409-1420.

10.1084/jem.20091885
108

Kursar M, Koch M, Mittrucker HW, Nouailles G, Bonhagen K, Kamradt T, et al. Cutting edge: regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis. J Immunol. 2007;178(5):2661-2665.

10.4049/jimmunol.178.5.2661
109

Scott-Browne JP, Shafiani S, Tucker-Heard G, Ishida-Tsubota K, Fontenot JD, Rudensky AY, et al. Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J Exp Med. 2007;204(9):2159-2169.

10.1084/jem.20062105
110

Irvine EB, O'Neil A, Darrah PA, Shin S, Choudhary A, Li W, et al. Robust IgM responses following intravenous vaccination with Bacille Calmette-Guerin associate with prevention of Mycobacterium tuberculosis infection in macaques. Nat Immunol. 2021;22(12):1515-1523.

10.1038/s41590-021-01066-1
111

Watson A, Li H, Ma B, Weiss R, Bendayan D, Abramovitz L, et al. Human antibodies targeting a Mycobacterium transporter protein mediate protection against tuberculosis. Nat Commun. 2021;12(1):602.

10.1038/s41467-021-20930-0
112

Klionsky DJ. The molecular machinery of autophagy: unanswered questions. J Cell Sci. 2005;118(Pt 1):7-18.

10.1242/jcs.01620
113

Feng Y, Yao Z, Klionsky DJ. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. 2015;25(6):354-363.

10.1016/j.tcb.2015.02.002
114

Yamamoto H, Zhang S, Mizushima N. Autophagy genes in biology and disease. Nat Rev Genet. 2023;24(6):382-400.

10.1038/s41576-022-00562-w
115

Kumar S, Jain A, Choi SW, Peixoto Duarte da Silva G, Allers L, Mudd MH, et al. Mammalian Atg8-family proteins are upstream regulators of the lysosomalsystem by controlling MTOR and TFEB. Autophagy. 2020;16(12):2305-2306.

10.1080/15548627.2020.1837423
116

Kim YS, Silwal P, Kim SY, Yoshimori T, Jo EK. Autophagy-activating strategies to promote innate defense against mycobacteria. Exp Mol Med. 2019;51(12):1-10.

10.1038/s12276-019-0290-7
117

Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753-766.

10.1016/j.cell.2004.11.038
118

Delgado M, Singh S, De Haro S, Master S, Ponpuak M, Dinkins C, et al. Autophagy and pattern recognition receptors in innate immunity. Immunol Rev. 2009;227(1):189-202.

10.1111/j.1600-065X.2008.00725.x
119

Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodziejska KE, Eissa NT. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity. 2007;27(1):135-144.

10.1016/j.immuni.2007.05.022
120

Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science. 2007;315(5817):1398-1401.

10.1126/science.1136880
121

Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V. Toll-like receptors control autophagy. EMBO J. 2008;27(7):1110-1121.

10.1038/emboj.2008.31
122

Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe. 2009;6(3):231-243.

10.1016/j.chom.2009.08.004
123

Schiebler M, Brown K, Hegyi K, Newton SM, Renna M, Hepburn L, et al. Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion. EMBO Mol Med. 2015;7(2):127-139.

10.15252/emmm.201404137
124

Persaud R, Li SC, Chao JD, Forestieri R, Donohue E, Balgi AD, et al. Clionamines stimulate autophagy, inhibit Mycobacterium tuberculosis survival in macrophages, and target Pik1. Cell Chem Biol. 2022;29(5):870-882. e11.

10.1016/j.chembiol.2021.07.017
125

Khaminets A, Behl C, Dikic I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 2016;26(1):6-16.

10.1016/j.tcb.2015.08.010
126

McEwan DG. Host-pathogen interactions and subversion of autophagy. Essays Biochem. 2017;61(6):687-697.

10.1042/EBC20170058
127

Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science. 2011;333(6039):228-233.

10.1126/science.1205405
128

Jo EK, Yuk JM, Shin DM, Sasakawa C. Roles of autophagy in elimination of intracellular bacterial pathogens. Front Immunol. 2013;4:97.

10.3389/fimmu.2013.00097
129

Castrejon-Jimenez NS, Leyva-Paredes K, Hernandez-Gonzalez JC, Luna-Herrera J, Garcia-Perez BE. The role of autophagy in bacterial infections. Biosci Trends. 2015;9(3):149-159.

10.5582/bst.2015.01035
130

Bell SL, Lopez KL, Cox JS, Patrick KL, Watson RO. Galectin-8 senses phagosomal damage and recruits selective autophagy adapter TAX1BP1 to control Mycobacterium tuberculosis infection in macrophages. mBio. 2021;12(4):e0187120.

10.1128/mBio.01871-20
131

Sakowski ET, Koster S, Portal Celhay C, Park HS, Shrestha E, Hetzenecker SE, et al. Ubiquilin 1 promotes IFN-gamma-induced xenophagy of Mycobacterium tuberculosis. PLoS Pathog. 2015;11(7):e1005076.

10.1371/journal.ppat.1005076
132

Romagnoli A, Di Rienzo M, Petruccioli E, Fusco C, Palucci I, Micale L, et al. The ubiquitin ligase TRIM32 promotes the autophagic response to Mycobacterium tuberculosis infection in macrophages. Cell Death Dis. 2023;14(8):505.

10.1038/s41419-023-06026-1
133

Lee YJ, Kim JK, Jung CH, Kim YJ, Jung EJ, Lee SH, et al. Chemical modulation of SQSTM1/p62-mediated xenophagy that targets a broad range of pathogenic bacteria. Autophagy. 2022;18(12):2926-2945.

10.1080/15548627.2022.2054240
134

Mizushima N. The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ. 2005;12 Suppl 2:1535-1541.

10.1038/sj.cdd.4401728
135

Pena-Martinez C, Rickman AD, Heckmann BL. Beyond autophagy: LC3-associated phagocytosis and endocytosis. Sci Adv. 2022;8(43):eabn1702.

10.1126/sciadv.abn1702
136

Durgan J, Lystad AH, Sloan K, Carlsson SR, Wilson MI, Marcassa E, et al. Non-canonical autophagy drives alternative ATG8 conjugation to phosphatidylserine. Mol Cell. 2021;81(9):2031-2040. e8.

10.1016/j.molcel.2021.03.020
137

Heckmann BL, Green DR. LC3-associated phagocytosis at a glance. J Cell Sci. 2019;132(5):jcs222984.

10.1242/jcs.222984
138

Koster S, Upadhyay S, Chandra P, Papavinasasundaram K, Yang G, Hassan A, et al. Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA. Proc Natl Acad Sci U S A. 2017;114(41):E8711-E8720.

10.1073/pnas.1707792114
139

Ge P, Lei Z, Yu Y, Lu Z, Qiang L, Chai Q, et al. M. tuberculosis PknG manipulates host autophagy flux to promote pathogen intracellular survival. Autophagy. 2022;18(3):576-594.

10.1080/15548627.2021.1938912
140

Bedard M, van der Niet S, Bernard EM, Babunovic G, Cheng TY, Aylan B, et al. A terpene nucleoside from M. tuberculosis induces lysosomal lipid storage in foamy macrophages. J Clin Invest. 2023;133(6):e161944.

10.1172/JCI161944
141

Paik S, Kim KT, Kim IS, Kim YJ, Kim HJ, Choi S, et al. Mycobacterial acyl carrier protein suppresses TFEB activation and upregulates miR-155 to inhibit host defense. Front Immunol. 2022;13:946929.

10.3389/fimmu.2022.946929
142

Strong EJ, Wang J, Ng TW, Porcelli SA, Lee S. Mycobacterium tuberculosis PPE51 inhibits autophagy by suppressing Toll-like receptor 2-dependent signaling. mBio. 2022;13(3):e0297421.

10.1128/mbio.02974-21
143

Strong EJ, Ng TW, Porcelli SA, Lee S. Mycobacterium tuberculosis PE_PGRS20 and PE_PGRS47 proteins inhibit autophagy by interaction with Rab1A. mSphere. 2021;6(4):e0054921.

10.1128/mSphere.00549-21
144

Garcia-Bengoa M, Meurer M, Goethe R, Singh M, Reljic R, von Kockritz-Blickwede M. Role of phagocyte extracellular traps during Mycobacterium tuberculosis infections and tuberculosis disease processes. Front Microbiol. 2023;14:983299.

10.3389/fmicb.2023.983299
145

Diatlova A, Linkova N, Lavrova A, Zinchenko Y, Medvedev D, Krasichkov A, et al. Molecular markers of rarly immune response in tuberculosis: prospects of application in predictive medicine. Int J Mol Sci. 2023;24(17):13261.

10.3390/ijms241713261
146

Ashenafi S, Loreti MG, Bekele A, Aseffa G, Amogne W, Kassa E, et al. Inflammatory immune profiles associated with disease severity in pulmonary tuberculosis patients with moderate to severe clinical TB or anemia. Front Immunol. 2023;14:1296501.

10.3389/fimmu.2023.1296501
147

Sudbury EL, Clifford V, Messina NL, Song R, Curtis N. Mycobacterium tuberculosis-specific cytokine biomarkers to differentiate active TB and LTBI: A systematic review. J Infect. 2020;81(6):873-881.

10.1016/j.jinf.2020.09.032
148

Dorhoi A, Kaufmann SH. Tumor necrosis factor alpha in mycobacterial infection. Semin Immunol. 2014;26(3):203-209.

10.1016/j.smim.2014.04.003
149

Ray JC, Flynn JL, Kirschner DE. Synergy between individual TNF-dependent functions determines granuloma performance for controlling Mycobacterium tuberculosis infection. J Immunol. 2009;182(6):3706-3717.

10.4049/jimmunol.0802297
150

Roach DR, Bean AG, Demangel C, France MP, Briscoe H, Britton WJ. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol. 2002;168(9):4620-4627.

10.4049/jimmunol.168.9.4620
151

Gomez-Reino JJ, Carmona L, Valverde VR, Mola EM, Montero MD, Group B. Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: a multicenter active-surveillance report. Arthritis Rheum. 2003;48(8):2122-2127.

10.1002/art.11137
152

Francisco NM, Hsu NJ, Keeton R, Randall P, Sebesho B, Allie N, et al. TNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis. J Neuroinflammation. 2015;12:125.

10.1186/s12974-015-0345-1
153

Vanden Driessche K, Persson A, Marais BJ, Fink PJ, Urdahl KB. Immune vulnerability of infants to tuberculosis. Clin Dev Immunol. 2013;2013:781320.

10.1155/2013/781320
154

Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477-489.

10.1038/s41577-019-0165-0
155

Mishra BB, Moura-Alves P, Sonawane A, Hacohen N, Griffiths G, Moita LF, et al. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol. 2010;12(8):1046-1063.

10.1111/j.1462-5822.2010.01450.x
156

Amaral EP, Riteau N, Moayeri M, Maier N, Mayer-Barber KD, Pereira RM, et al. Lysosomal cathepsin release is required for NLRP3-inflammasome activation by Mycobacterium tuberculosis in infected macrophages. Front Immunol. 2018;9:1427.

10.3389/fimmu.2018.01427
157

Koo IC, Wang C, Raghavan S, Morisaki JH, Cox JS, Brown EJ. ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. Cell Microbiol. 2008;10(9):1866-1878.

10.1111/j.1462-5822.2008.01177.x
158

Silverio D, Goncalves R, Appelberg R, Saraiva M. Advances on the role and applications of interleukin-1 in tuberculosis. mBio. 2021;12(6):e0313421.

10.1128/mBio.03134-21
159

Winchell CG, Mishra BB, Phuah JY, Saqib M, Nelson SJ, Maiello P, et al. Evaluation of IL-1 blockade as an adjunct to linezolid therapy for tuberculosis in mice and macaques. Front Immunol. 2020;11:891.

10.3389/fimmu.2020.00891
160

Shah S, Bohsali A, Ahlbrand SE, Srinivasan L, Rathinam VA, Vogel SN, et al. Cutting edge: Mycobacterium tuberculosis but not nonvirulent mycobacteria inhibits IFN-beta and AIM2 inflammasome-dependent IL-1beta production via its ESX-1 secretion system. J Immunol. 2013;191(7):3514-3518.

10.4049/jimmunol.1301331
161

Wong KW, Jacobs WR Jr. Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis. Cell Microbiol. 2011;13(9):1371-1384.

10.1111/j.1462-5822.2011.01625.x
162

Eklund D, Welin A, Andersson H, Verma D, Soderkvist P, Stendahl O, et al. Human gene variants linked to enhanced NLRP3 activity limit intramacrophage growth of Mycobacterium tuberculosis. J Infect Dis. 2014;209(5):749-753.

10.1093/infdis/jit572
163

Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633-652.

10.1038/nrd3800
164

Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol. 2013;25(6):469-484.

10.1016/j.smim.2013.10.008
165

Panda V, Ashar H, Srinath S. Antioxidant and hepatoprotective effect of Garcinia indica fruit rind in ethanol-induced hepatic damage in rodents. Interdiscip Toxicol. 2012;5(4):207-213.

10.2478/v10102-012-0034-1
166

Brassard P, Kezouh A, Suissa S. Antirheumatic drugs and the risk of tuberculosis. Clin Infect Dis. 2006;43(6):717-722.

10.1086/506935
167

Mayer-Barber KD, Barber DL, Shenderov K, White SD, Wilson MS, Cheever A, et al. Caspase-1 independent IL-1beta production is critical for host resistance to mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol. 2010;184(7):3326-3330.

10.4049/jimmunol.0904189
168

Yamada H, Mizumo S, Horai R, Iwakura Y, Sugawara I. Protective role of interleukin-1 in mycobacterial infection in IL-1 alpha/beta double-knockout mice. Lab Invest. 2000;80(5):759-767.

10.1038/labinvest.3780079
169

Sugawara I, Yamada H, Hua S, Mizuno S. Role of interleukin (IL)-1 type 1 receptor in mycobacterial infection. Microbiol Immunol. 2001;45(11):743-750.

10.1111/j.1348-0421.2001.tb01310.x
170

Bohrer AC, Tocheny C, Assmann M, Ganusov VV, Mayer-Barber KD. Cutting Edge: IL-1R1 mediates host resistance to Mycobacterium tuberculosis by trans-protection of infected cells. J Immunol. 2018;201(6):1645-1650.

10.4049/jimmunol.1800438
171

Fremond CM, Togbe D, Doz E, Rose S, Vasseur V, Maillet I, et al. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J Immunol. 2007;179(2):1178-1189.

10.4049/jimmunol.179.2.1178
172

Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature. 2014;511(7507):99-103.

10.1038/nature13489
173

Kwon KW, Kim LH, Kang SM, Lee JM, Choi E, Park J, et al. Host-directed anti-mycobacterial activity of colchicine, an anti-gout drug, via strengthened host innate resistance reinforced by the IL-1beta/PGE2 axis. Br J Pharmacol. 2022;179(15):3951-3969.

10.1111/bph.15838
174

Dorhoi A, Nouailles G, Jorg S, Hagens K, Heinemann E, Pradl L, et al. Activation of the NLRP3 inflammasome by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis. Eur J Immunol. 2012;42(2):374-384.

10.1002/eji.201141548
175

Wolf J, Rose-John S, Garbers C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine. 2014;70(1):11-20.

10.1016/j.cyto.2014.05.024
176

Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006;8 Suppl 2 (Suppl 2):S3.

10.1186/ar1917
177

Rose-John S, Winthrop K, Calabrese L. The role of IL-6 in host defence against infections: immunobiology and clinical implications. Nat Rev Rheumatol. 2017;13(7):399-409.

10.1038/nrrheum.2017.83
178

Gupte AN, Kumar P, Araujo-Pereira M, Kulkarni V, Paradkar M, Pradhan N, et al. Baseline IL-6 is a biomarker for unfavourable tuberculosis treatment outcomes: a multisite discovery and validation study. Eur Respir J. 2022;59(4):2100905.

10.1183/13993003.00905-2021
179

Chowdhury IH, Choudhuri S, Sen A, Bhattacharya B, Ahmed AM, Hazra A, et al. Serum interleukin 6 (IL-6) as a potential biomarker of disease progression in active pulmonary tuberculosis following anti-tuberculosis drug therapy. Mol Immunol. 2015;63(2):601-602.

10.1016/j.molimm.2014.09.006
180

Maseko TG, Ngubane S, Letsoalo M, Rambaran S, Archary D, Samsunder N, et al. Higher plasma interleukin - 6 levels are associated with lung cavitation in drug-resistant tuberculosis. BMC Immunol. 2023;24(1):26.

10.1186/s12865-023-00563-2
181

Liu Y, Li X, Liu W, Liu Y, Zhong Z, Wang L, et al. IL-6 release of Rv0183 antigen-stimulated whole blood is a potential biomarker for active tuberculosis patients. J Infect. 2018;76(4):376-382.

10.1016/j.jinf.2017.11.004
182

Antas P, Borchert J, Ponte C, Lima J, Georg I, Bastos M, et al. Interleukin-6 and -27 as potential novel biomarkers for human pleural tuberculosis regardless of the immunological status. Microbes Infect. 2024;26(1-2):105238.

10.1016/j.micinf.2023.105238
183

Kruthika P. Role of IL 6 as a biomarker in the diagnosis of tuberculous meningitis - A systematic review. Int J Mycobacteriol. 2022;11(3):229-235.

10.4103/ijmy.ijmy_101_22
184

Boni FG, Hamdi I, Koundi LM, Shrestha K, Xie J. Cytokine storm in tuberculosis and IL-6 involvement. Infect Genet Evol. 2022;97:105166.

10.1016/j.meegid.2021.105166
185

Dutta RK, Kathania M, Raje M, Majumdar S. IL-6 inhibits IFN-gamma induced autophagy in Mycobacterium tuberculosis H37Rv infected macrophages. Int J Biochem Cell Biol. 2012;44(6):942-954.

10.1016/j.biocel.2012.02.021
186

Jung BG, Wang X, Yi N, Ma J, Turner J, Samten B. Early secreted antigenic target of 6-kDa of Mycobacterium tuberculosis stimulates IL-6 production by macrophages through activation of STAT3. Sci Rep. 2017;7:40984.

10.1038/srep40984
187

Rottenberg ME, Carow B. SOCS3 and STAT3, major controllers of the outcome of infection with Mycobacterium tuberculosis. Semin Immunol. 2014;26(6):518-532.

10.1016/j.smim.2014.10.004
188

Ladel CH, Blum C, Dreher A, Reifenberg K, Kopf M, Kaufmann SH. Lethal tuberculosis in interleukin-6-deficient mutant mice. Infect Immun. 1997;65(11):4843-4849.

10.1128/iai.65.11.4843-4849.1997
189

Saunders BM, Frank AA, Orme IM, Cooper AM. Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection. Infect Immun. 2000;68(6):3322-3326.

10.1128/IAI.68.6.3322-3326.2000
190

Dienz O, Rincon M. The effects of IL-6 on CD4 T cell responses. Clin Immunol. 2009;130(1):27-33.

10.1016/j.clim.2008.08.018
191

Linge I, Tsareva A, Kondratieva E, Dyatlov A, Hidalgo J, Zvartsev R, et al. Pleiotropic effect of IL-6 produced by B-Lymphocytes during early phases of adaptive immune responses against TB infection. Front Immunol. 2022;13:750068.

10.3389/fimmu.2022.750068
192

Lindblad EB, Elhay MJ, Silva R, Appelberg R, Andersen P. Adjuvant modulation of immune responses to tuberculosis subunit vaccines. Infect Immun. 1997;65(2):623-629.

10.1128/iai.65.2.623-629.1997
193

Slight SR, Rangel-Moreno J, Gopal R, Lin Y, Fallert Junecko BA, Mehra S, et al. CXCR5+ T helper cells mediate protective immunity against tuberculosis. J Clin Invest. 2013;123(2):712-726.

10.1172/JCI65728
194

Liu S, Guan L, Peng C, Cheng Y, Cheng H, Wang F, et al. Mycobacterium tuberculosis suppresses host DNA repair to boost its intracellular survival. Cell Host Microbe. 2023;31(11):1820-1836. e10.

10.1016/j.chom.2023.09.010
195

Ding Y, Bei C, Xue Q, Niu L, Tong J, Chen Y, et al. Transcriptomic analysis of mycobacterial infected macrophages reveals a high MOI specific type I IFN signaling. Infect Immun. 2023;91(7):e0015523.

10.1128/iai.00155-23
196

Bobba S, Howard NC, Das S, Ahmed M, Tang L, Thirunavukkarasu S, et al. Mycobacterium tuberculosis carrying the rifampicin drug-resistance-conferring rpoB mutation H445Y is associated with suppressed immunity through type I interferons. mBio. 2023;14(5):e0094623.

10.1128/mbio.00946-23
197

Dabla A, Liang YC, Rajabalee N, Irwin C, Moonen CGJ, Willis JV, et al. TREM2 promotes immune rvasion by Mycobacterium tuberculosis in human macrophages. mBio. 2022;13(4):e0145622.

10.1128/mbio.01456-22
198

Naik SK, McNehlan ME, Mreyoud Y, Kinsella RL, Smirnov A, Chowdhury CS, et al. Type I IFN signaling in the absence of IRGM1 promotes M. tuberculosis replication in immune cells by suppressing T cell responses. bioRxiv. 2023;2023.

10.1101/2023.10.03.560720
199

Kotov DI, Lee OV, Fattinger SA, Langner CA, Guillen JV, Peters JM, et al. Early cellular mechanisms of type I interferon-driven susceptibility to tuberculosis. Cell. 2023;186(25):5536-5553. e22.

10.1016/j.cell.2023.11.002
200

Moreira-Teixeira L, Mayer-Barber K, Sher A, O'Garra A. Type I interferons in tuberculosis: Foe and occasionally friend. J Exp Med. 2018;215(5):1273-1285.

10.1084/jem.20180325
201

Zarogoulidis P, Kioumis I, Papanas N, Manika K, Kontakiotis T, Papagianis A, et al. The effect of combination IFN-alpha-2a with usual antituberculosis chemotherapy in non-responding tuberculosis and diabetes mellitus: a case report and review of the literature. J Chemother. 2012;24(3):173-177.

10.1179/1973947812Y.0000000005
202

Bax HI, Freeman AF, Ding L, Hsu AP, Marciano B, Kristosturyan E, et al. Interferon alpha treatment of patients with impaired interferon gamma signaling. J Clin Immunol. 2013;33(5):991-1001.

10.1007/s10875-013-9882-5
203

Rivas-Santiago CE, Guerrero GG. IFN-alpha boosting of Mycobacterium bovis Bacillus Calmette Guerin-vaccine promoted Th1 type cellular response and protection against M. tuberculosis infection. Biomed Res Int. 2017;2017:8796760.

10.1155/2017/8796760
204

Groschel MI, Sayes F, Shin SJ, Frigui W, Pawlik A, Orgeur M, et al. Recombinant BCG expressing ESX-1 of Mycobacterium marinum combines low virulence with cytosolic immune signaling and improved TB protection. Cell Rep. 2017;18(11):2752-2765.

10.1016/j.celrep.2017.02.057
205

McNab FW, Ewbank J, Howes A, Moreira-Teixeira L, Martirosyan A, Ghilardi N, et al. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-gamma for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages. J Immunol. 2014;193(7):3600-3612.

10.4049/jimmunol.1401088
206

Howes A, Taubert C, Blankley S, Spink N, Wu X, Graham CM, et al. Differential production of type I IFN determines the reciprocal levels of IL-10 and proinflammatory cytokines produced by C57BL/6 and BALB/c macrophages. J Immunol. 2016;197(7):2838-2853.

10.4049/jimmunol.1501923
Information
  • Publisher :The Korean Society for Microbiology and The Korean Society of Virology
  • Publisher(Ko) :대한미생물학회‧대한바이러스학회
  • Journal Title :JOURNAL OF BACTERIOLOGY AND VIROLOGY
  • Volume : 54
  • No :3
  • Pages :167-190
  • Received Date : 2024-05-07
  • Revised Date : 2024-06-23
  • Accepted Date : 2024-07-15