All Issue

2025 Vol.55, Issue 1 Preview Page

Original Article

31 March 2025. pp. 69-78
Abstract
References
1

Euzeby JP. List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol. 1997;47(2):590-592.

10.1099/00207713-47-2-5909103655
2

Gopalaswamy R, Shanmugam S, Mondal R, Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections - a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci. 2020;27(1):74.

10.1186/s12929-020-00667-632552732PMC7297667
3

Chopra S, Matsuyama K, Hutson C, Madrid P. Identification of antimicrobial activity among FDA-approved drugs for combating Mycobacterium abscessus and Mycobacterium chelonae. J Antimicrob Chemother. 2011;66(7):1533-1536.

10.1093/jac/dkr15421486854
4

Lopeman RC, Harrison J, Desai M, Cox JAG. Mycobacterium abscessus: Environmental Bacterium Turned Clinical Nightmare. Microorganisms. 2019;7(3):90.

10.3390/microorganisms703009030909391PMC6463083
5

Huh HJ, Kim SY, Shim HJ, Kim DH, Yoo IY, Kang OK, et al. GenoType NTM-DR performance evaluation for identification of Mycobacterium avium complex and Mycobacterium abscessus and determination of clarithromycin and amikacin resistance. J Clin Microbiol. 2019;57(8):e00516-19.

10.1128/JCM.00516-1931167842PMC6663903
6

Ruth MM, Sangen JJN, Remmers K, Pennings LJ, Svensson E, Aarnoutse RE, et al. A bedaquiline/clofazimine combination regimen might add activity to the treatment of clinically relevant non-tuberculous mycobacteria. J Antimicrob Chemother. 2019;74(4):935-943.

10.1093/jac/dky52630649327
7

Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367-416.

10.1164/rccm.200604-571ST17277290
8

Gilljam M, Schersten H, Silverborn M, Jonsson B, Ericsson Hollsing A. Lung transplantation in patients with cystic fibrosis and Mycobacterium abscessus infection. J Cyst Fibros. 2010;9(4):272-276.

10.1016/j.jcf.2010.03.00820400381
9

Taylor JL, Palmer SM. Mycobacterium abscessus chest wall and pulmonary infection in a cystic fibrosis lung transplant recipient. J Heart Lung Transplant. 2006;25(8):985-988.

10.1016/j.healun.2006.04.00316890122
10

Kaiser JC, Heinrichs DE. Branching Out: Alterations in Bacterial Physiology and Virulence Due to Branched-Chain Amino Acid Deprivation. mBio. 2018;9(5): e01188-18..

10.1128/mBio.01188-1830181248PMC6123439
11

Thiour-Mauprivez C, Martin-Laurent F, Calvayrac C, Barthelmebs. Effects of herbicide on non-target microorganisms: towards a new class of biomarkers? Sci Total Environ. 2019;684:314-325.

10.1016/j.scitotenv.2019.05.23031153078
12

Choi KJ, Yu YG, Hahn HG, Choi J-D, Yoon MY. Characterization of acetohydroxyacid synthase from Mycobacterium tuberculosis and the identification of its new inhibitor from the screening of a chemical library. FEBS Lett. 2005;579(21):4903-4910.

10.1016/j.febslet.2005.07.05516111681
13

Garcia MD, Nouwens A, Lonhienne TG, Guddat LW. Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families. Proc Natl Acad Sci U S A. 2017;114(7):E1091-E1100.

10.1073/pnas.161614211428137884PMC5321015
14

Gokhale K, Tilak B. Mechanisms of bacterial acetohydroxyacid synthase (AHAS) and specific inhibitors of Mycobacterium tuberculosis AHAS as potential drug candidates against tuberculosis. Curr Drug Targets. 2015;16(7):689-699.

10.2174/138945011666615041611554725882218
15

Amorim Franco TM, Hegde S, Blanchard JS. Chemical Mechanism of the Branched-Chain Aminotransferase IlvE from Mycobacterium tuberculosis. Biochemistry. 2016;55(45):6295-6303.

10.1021/acs.biochem.6b0092827780341
16

Wang D, Zhu X, Cui C, Dong M, Jiang H, Li Z, et al. Discovery of novel acetohydroxyacid synthase inhibitors as active agents against Mycobacterium tuberculosis by virtual screening and bioassay. J Chem Inf Model. 2013;53(2):343-353.

10.1021/ci300454523316686
17

Grandoni JA, Marta PT, Schloss JV. Inhibitors of branched-chain amino acid biosynthesis as potential antituberculosis agents. J Antimicrob Chemother. 1998;42(4):475-482.

10.1093/jac/42.4.4759818746
18

Cho SN, Choi JA, Lee J, Son SH, Lee SA, Nguyen TD, et al. Ang II-Induced Hypertension Exacerbates the Pathogenesis of Tuberculosis. Cells. 2021;10(9):2478.

10.3390/cells1009247834572127PMC8465031
19

Lee J, Choi JA, Cho SN, Son SH, Song CH. Mitofusin 2-Deficiency Suppresses Mycobacterium tuberculosis Survival in Macrophages. Cells. 2019;8(11):1355.

10.3390/cells811135531671648PMC6912353
20

Nguyen TD, Choi JA, Lim HJ, Chae CH, Lee J, Son SH, et al. Inhibitors of acetohydroxyacid synthase as promising agents against non-tuberculous mycobacterial diseases. J Antibiot. 2025;78(3):181-189.

10.1038/s41429-024-00799-z39672903
21

Choi JA, Cho SN, Lee J, Son SH, Nguyen DT, Lee SA, et al. Lipocalin 2 regulates expression of MHC class I molecules in Mycobacterium tuberculosis-infected dendritic cells via ROS production. Cell Biosci. 2021;11(1):175.

10.1186/s13578-021-00686-234563261PMC8466733
22

Sohn H, Lee KS, Ko YK, Ryu JW, Woo JC, Koo DW, et al. In vitro and ex vivo activity of new derivatives of acetohydroxyacid synthase inhibitors against Mycobacterium tuberculosis and non-tuberculous mycobacteria. Int J Antimicrob Agents. 2008;31(6):567-571.

10.1016/j.ijantimicag.2008.01.01618337064
23

Zohar Y, Einav M, Chipman DM, Barak Z. Acetohydroxyacid synthase from Mycobacterium avium and its inhibition by sulfonylureas and imidazolinones. Biochim Biophys Acta. 2003;1649(1):97-105.

10.1016/S1570-9639(03)00160-2
24

Choi KJ, Noh KM, Kim DE, Ha BH, Kim EE, Yoon MY. Identification of the catalytic subunit of acetohydroxyacid synthase in Haemophilus influenzae and its potent inhibitors. Arch Biochem Biophys. 2007;466(1):24-30.

10.1016/j.abb.2007.07.01117718999
25

Lim WM, Baig IJ, La IJ, Choi JD, Kim DE, Kim SK, et al. Cloning, characterization and evaluation of potent inhibitors of Shigella sonnei acetohydroxyacid synthase catalytic subunit. Biochim Biophys Acta. 2011;1814(12):1825-1831.

10.1016/j.bbapap.2011.09.00722015678
26

Choi KJ, Yu YG, Hahn HG, Choi JD, Yoon MY. Characterization of acetohydroxyacid synthase from Mycobacterium tuberculosis and the identification of its new inhibitor from the screening of a chemical library. FEBS Lett. 2005;579(21):4903-4910.

10.1016/j.febslet.2005.07.05516111681
27

Gesbert G, Ramond E, Tros F, Dairou J, Frapy E, Barel M, et al. Importance of branched-chain amino acid utilization in Francisella intracellular adaptation. Infect Immun. 2015;83(1):173-183.

10.1128/IAI.02579-1425332124PMC4288867
28

Gokhale K, Tilak B. Mechanisms of bacterial acetohydroxyacid synthase (AHAS) and specific inhibitors of Mycobacterium tuberculosis AHAS as potential drug candidates against tuberculosis. Curr Drug Targets. 2015;16(7):689-699.

10.2174/138945011666615041611554725882218
29

Liu YK, Kuo HC, Lai CH, Chou CC. Single amino acid utilization for bacterial categorization. Sci Rep. 2020;10(1):12686.

10.1038/s41598-020-69686-532728059PMC7391690
30

Boigegrain RA, Liautard JP, Kohler S. Targeting of the virulence factor acetohydroxyacid synthase by sulfonylureas results in inhibition of intramacrophagic multiplication of Brucella suis. Antimicrob Agents Chemother. 2005;49(9):3922-3925.

10.1128/AAC.49.9.3922-3925.200516127072PMC1195390
31

Ibrahim HS, Eldehna WM, Abdel-Aziz HA, Elaasser MM, Abdel-Aziz MM. Improvement of antibacterial activity of some sulfa drugs through linkage to certain phthalazin-1(2H)-one scaffolds. Eur J Med Chem. 2014;85:480-486.

10.1016/j.ejmech.2014.08.01625113876
32

Capasso C, Supuran CT. Sulfa and trimethoprim-like drugs - antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. J Enzyme Inhib Med Chem. 2014;29(3):379-387.

10.3109/14756366.2013.78742223627736
33

Bouissane L, El Kazzouli S, Leonce S, Pfeiffer B, Rakib EM, Khouili M, et al. Synthesis and biological evaluation of N-(7-indazolyl)benzenesulfonamide derivatives as potent cell cycle inhibitors. Bioorg Med Chem. 2006;14(4):1078-1088.

10.1016/j.bmc.2005.09.03716274996
34

Camoutsis C, Geronikaki A, Ciric A, Sokovic M, Zoumpoulakis P, Zervou M. Sulfonamide-1,2,4-thiadiazole derivatives as antifungal and antibacterial agents: synthesis, biological evaluation, lipophilicity, and conformational studies. Chem Pharm Bull (Tokyo). 2010;58(2):160-167.

10.1248/cpb.58.16020118573
35

Scarim CB, Chelucci RC, Dos Santos JL, Chin CM. The use of Sulfonamide Derivatives in the Treatment of Trypanosomatid Parasites including Trypanosoma cruzi, Trypanosoma brucei, and Leishmania ssp. Med Chem. 2020;16(1):24-38.

10.2174/157340641566619062014110931218962
36

Chibale K, Haupt H, Kendrick H, Yardley V, Saravanamuthu A, Fairlamb AH, et al. Antiprotozoal and cytotoxicity evaluation of sulfonamide and urea analogues of quinacrine. Bioorg Med Chem Lett. 2001;11(19):2655-2657.

10.1016/S0960-894X(01)00528-511551771
37

Zessel K, Mohring S, Hamscher G, Kietzmann M, Stahl J. Biocompatibility and antibacterial activity of photolytic products of sulfonamides. Chemosphere. 2014;100:167-174.

10.1016/j.chemosphere.2013.11.03824321335
38

Ovung A, Bhattacharyya J. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys Rev. 2021;13(2):259-272.

10.1007/s12551-021-00795-933936318PMC8046889
Information
  • Publisher :The Korean Society for Microbiology and The Korean Society of Virology
  • Publisher(Ko) :대한미생물학회‧대한바이러스학회
  • Journal Title :JOURNAL OF BACTERIOLOGY AND VIROLOGY
  • Volume : 55
  • No :1
  • Pages :69-78
  • Received Date : 2025-03-12
  • Revised Date : 2025-03-21
  • Accepted Date : 2025-03-25