Review Article
Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the 'Enterobacteriales' : proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 2016;66(12):5575-5599.
10.1099/ijsem.0.00148527620848Ryan MP, O'Dwyer J, Adley CC. Evaluation of the Complex Nomenclature of the Clinically and Veterinary Significant Pathogen Salmonella. Biomed Res Int. 2017;2017:3782182.
10.1155/2017/378218228540296PMC5429938Fookes M, Schroeder GN, Langridge GC, Blondel CJ, Mammina C, Connor TR, et al. Salmonella bongori provides insights into the evolution of the Salmonellae. PLoS Pathog. 2011;7(8):e1002191.
10.1371/journal.ppat.100219121876672PMC3158058Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. Salmonella nomenclature. J Clin Microbiol. 2000;38(7):2465-2467.
10.1128/JCM.38.7.2465-2467.200010878026PMC86943LeLievre V, Besnard A, Schlusselhuber M, Desmasures N, Dalmasso M. Phages for biocontrol in foods: What opportunities for Salmonella sp. control along the dairy food chain? Food Microbiol. 2019;78:89-98.
10.1016/j.fm.2018.10.00930497612Agasan A, Kornblum J, Williams G, Pratt CC, Fleckenstein P, Wong M, et al. Profile of Salmonella enterica subsp. enterica (subspecies I) serotype 4,5,12:i:- strains causing food-borne infections in New York City. J Clin Microbiol. 2002;40(6):1924-1929.
10.1128/JCM.40.6.1924-1929.200212037044PMC130705Hounmanou YMG, Baniga Z, Garcia V, Dalsgaard A. Salmonella Salamae and S. Waycross isolated from Nile perch in Lake Victoria show limited human pathogenic potential. Sci Rep. 2022;12(1):4229.
10.1038/s41598-022-08200-535273308PMC8913728Mahajan RK, Khan SA, Chandel DS, Kumar N, Hans C, Chaudhry R. Fatal case of Salmonella enterica subsp. arizonae gastroenteritis in an infant with microcephaly. J Clin Microbiol. 2003;41(12):5830-5832.
10.1128/JCM.41.12.5830-5832.2003PMC309002Giner-Lamia J, Vinuesa P, Betancor L, Silva C, Bisio J, Soleto L, et al. Genome analysis of Salmonella enterica subsp. diarizonae isolates from invasive human infections reveals enrichment of virulence-related functions in lineage ST1256. BMC Genomics. 2019;20(1):99.
10.1186/s12864-018-5352-z30704413PMC6357384Andruzzi MN, Krath ML, Lawhon SD, Boudreau B. Salmonella enterica subspecies houtenae as an opportunistic pathogen in a case of meningoencephalomyelitis and bacteriuria in a dog. BMC Vet Res. 2020;16(1):437.
10.1186/s12917-020-02652-533176763PMC7659121Ferrari RG, Rosario DKA, Cunha-Neto A, Mano SB, Figueiredo EES, Conte-Junior CA. Worldwide Epidemiology of Salmonella Serovars in Animal-Based Foods: a Meta-analysis. Appl Environ Microbiol. 2019;85(14):e00591-19.
10.1128/AEM.00591-1931053586PMC6606869Issenhuth-Jeanjean S, Roggentin P, Mikoleit M, Guibourdenche M, de Pinna E, Nair S, et al. Supplement 2008-2010 (no. 48) to the White-Kauffmann-Le Minor scheme. Res Microbiol. 2014;165(7):526-530.
10.1016/j.resmic.2014.07.00425049166Smith SI, Seriki A, Ajayi A. Typhoidal and non-typhoidal Salmonella infections in Africa. Eur J Clin Microbiol Infect Dis. 2016;35(12):1913-1922.
10.1007/s10096-016-2760-327562406House D, Bishop A, Parry C, Dougan G, Wain J. Typhoid fever: pathogenesis and disease. Curr Opin Infect Dis. 2001;14(5):573-578.
10.1097/00001432-200110000-0001111964878Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. Typhoid fever. N Engl J Med. 2002;347(22):1770-1782.
10.1056/NEJMra02020112456854Dougan G, Baker S. Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. Annu Rev Microbiol. 2014;68:317-336.
10.1146/annurev-micro-091313-10373925208300Galan JE. Salmonella Typhimurium and inflammation: a pathogen-centric affair. Nat Rev Microbiol. 2021;19(11):716-725.
10.1038/s41579-021-00561-434012042PMC9350856Rivera-Chavez F, Baumler AJ. The Pyromaniac Inside You: Salmonella Metabolism in the Host Gut. Annu Rev Microbiol. 2015;69:31-48.
10.1146/annurev-micro-091014-10410826002180Kim JH, Song SM, Kim JH, Lim SM, Park SJ, Nam HJ, et al. Trends in Acute Gastroenteritis through the Pathogen Surveillance System in Incheon Metropolitan City, 2018-2021. J Bacteriol Virol. 2022;52(2):54-63.
10.4167/jbv.2022.52.2.054U. S. Centers for Disease Control and Prevention. Salmonella Homepage. Available at https://www.cdc.gov/salmonella/index.html [accessed on 3 October 2024].
Korea Disease Control and Prevention Agency. Desease Portal/Desease Statics/Salmonella Infection. Available at https://dportal.kdca.go.kr/pot/ii/sttyInftnsds/sttyInftnsds.do?icdCd=ND0601 [accessed on 19 August 2024].
Jesudason T. WHO publishes updated list of bacterial priority pathogens. Lancet Microbe. 2024;5(9):100940.
10.1016/j.lanmic.2024.07.00339079540Ohl ME, Miller SI. Salmonella: a model for bacterial pathogenesis. Annu Rev Med. 2001;52:259-274.
10.1146/annurev.med.52.1.25911160778Haraga A, Ohlson MB, Miller SI. Salmonellae interplay with host cells. Nat Rev Microbiol. 2008;6(1):53-66.
10.1038/nrmicro178818026123Kohbata S, Yokoyama H, Yabuuchi E. Cytopathogenic effect of Salmonella typhi GIFU 10007 on M cells of murine ileal Peyer's patches in ligated ileal loops: an ultrastructural study. Microbiol Immunol. 1986;30(12):1225-1237.
10.1111/j.1348-0421.1986.tb03055.x3553868Jones BD, Ghori N, Falkow S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med. 1994;180(1):15-23.
10.1084/jem.180.1.158006579PMC2191576Jennings E, Thurston TLM, Holden DW. Salmonella SPI-2 Type III Secretion System Effectors: Molecular Mechanisms And Physiological Consequences. Cell Host Microbe. 2017;22(2):217-231.
10.1016/j.chom.2017.07.00928799907Wotzka SY, Nguyen BD, Hardt WD. Salmonella Typhimurium Diarrhea Reveals Basic Principles of Enteropathogen Infection and Disease-Promoted DNA Exchange. Cell Host Microbe. 2017;21(4):443-454.
10.1016/j.chom.2017.03.00928407482McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature. 2001;413(6858):852-856.
10.1038/3510161411677609Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature. 2001;413(6858):848-852.
10.1038/3510160711677608Sabbagh SC, Forest CG, Lepage C, Leclerc JM, Daigle F. So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi. FEMS Microbiol Lett. 2010;305(1):1-13.
10.1111/j.1574-6968.2010.01904.x20146749Raffatellu M, Chessa D, Wilson RP, Dusold R, Rubino S, Baumler AJ. The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect Immun. 2005;73(6):3367-3374.
10.1128/IAI.73.6.3367-3374.200515908363PMC1111811Yang YA, Chong A, Song J. Why Is Eradicating Typhoid Fever So Challenging: Implications for Vaccine and Therapeutic Design. Vaccines (Basel). 2018;6(3):45.
10.3390/vaccines603004530042307PMC6160957Wangdi T, Lee CY, Spees AM, Yu C, Kingsbury DD, Winter SE, et al. The Vi capsular polysaccharide enables Salmonella enterica serovar typhi to evade microbe-guided neutrophil chemotaxis. PLoS Pathog. 2014;10(8):e1004306.
10.1371/journal.ppat.100430625101794PMC4125291Chong A, Lee S, Yang YA, Song J. The Role of Typhoid Toxin in Salmonella Typhi Virulence. Yale J Biol Med. 2017;90(2):283-290.
Galan JE. Typhoid toxin provides a window into typhoid fever and the biology of Salmonella Typhi. Proc Natl Acad Sci U S A. 2016;113(23):6338-6344.
10.1073/pnas.160633511327222578PMC4988619Miller RA, Wiedmann M. The Cytolethal Distending Toxin Produced by Nontyphoidal Salmonella Serotypes Javiana, Montevideo, Oranienburg, and Mississippi Induces DNA Damage in a Manner Similar to That of Serotype Typhi. mBio. 2016;7(6):e02109-16.
10.1128/mBio.02109-1627999166PMC5181781Kombade S, Kaur N. Pathogenicity Island in Salmonella. In: Lamas A, editor. Salmonella spp - A Global Challenge. IntechOpen; 2021.
10.5772/intechopen.96443Lou L, Zhang P, Piao R, Wang Y. Salmonella Pathogenicity Island 1 (SPI-1) and Its Complex Regulatory Network. Front Cell Infect Microbiol. 2019;9:270.
10.3389/fcimb.2019.0027031428589PMC6689963Retamal P, Castillo-Ruiz M, Mora GC. Characterization of MgtC, a virulence factor of Salmonella enterica Serovar Typhi. PLoS One. 2009;4(5):e5551.
10.1371/journal.pone.000555119436747PMC2677668Wang S, Yang D, Wu X, Wang Y, Wang D, Tian M, et al. Autotransporter MisL of Salmonella enterica serotype Typhimurium facilitates bacterial aggregation and biofilm formation. FEMS Microbiol Lett. 2018;365(17).
10.1093/femsle/fny142Gerlach RG, Jackel D, Stecher B, Wagner C, Lupas A, Hardt WD, et al. Salmonella Pathogenicity Island 4 encodes a giant non-fimbrial adhesin and the cognate type 1 secretion system. Cell Microbiol. 2007;9(7):1834-1850.
10.1111/j.1462-5822.2007.00919.x17388786Knodler LA, Celli J, Hardt WD, Vallance BA, Yip C, Finlay BB. Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol Microbiol. 2002;43(5):1089-1103.
10.1046/j.1365-2958.2002.02820.x11918798Folkesson A, Lofdahl S, Normark S. The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol. 2002;153(8):537-545.
10.1016/S0923-2508(02)01348-712437215Seth-Smith HM. SPI-7: Salmonella's Vi-encoding Pathogenicity Island. J Infect Dev Ctries. 2008;2(4):267-271.
10.3855/jidc.22019741287Velasquez JC, Hidalgo AA, Villagra N, Santiviago CA, Mora GC, Fuentes JA. SPI-9 of Salmonella enterica serovar Typhi is constituted by an operon positively regulated by RpoS and contributes to adherence to epithelial cells in culture. Microbiology (Reading). 2016;162(8):1367-1378.
10.1099/mic.0.00031927260307Bishop AL, Baker S, Jenks S, Fookes M, Gaora PO, Pickard D, et al. Analysis of the hypervariable region of the Salmonella enterica genome associated with tRNAleuX. J Bacteriol. 2005;187(7):2469-2482.
10.1128/JB.187.7.2469-2482.200515774890PMC1065210Chiu CH, Tang P, Chu C, Hu S, Bao Q, Yu J, et al. The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res. 2005;33(5):1690-1698.
10.1093/nar/gki29715781495PMC1069006Shah DH, Lee MJ, Park JH, Lee JH, Eo SK, Kwon JT, et al. Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. Microbiology (Reading). 2005;151(Pt 12):3957-3968.
10.1099/mic.0.28126-016339940Vernikos GS, Parkhill J. Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics. 2006;22(18):2196-2203.
10.1093/bioinformatics/btl36916837528Lee M, Ryu M, Joo M, Seo YJ, Lee J, Kim HM, et al. Endoribonuclease-mediated control of hns mRNA stability constitutes a key regulatory pathway for Salmonella Typhimurium pathogenicity island 1 expression. PLoS Pathog. 2021;17(2):e1009263.
10.1371/journal.ppat.100926333524062PMC7877770Song M, Sukovich DJ, Ciccarelli L, Mayr J, Fernandez-Rodriguez J, Mirsky EA, et al. Control of type III protein secretion using a minimal genetic system. Nat Commun. 2017;8:14737.
10.1038/ncomms1473728485369PMC5436071Ellermeier JR, Slauch JM. Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol. 2007;10(1):24-29.
10.1016/j.mib.2006.12.00217208038LaRock DL, Chaudhary A, Miller SI. Salmonellae interactions with host processes. Nat Rev Microbiol. 2015;13(4):191-205.
10.1038/nrmicro342025749450PMC5074537Figueira R, Holden DW. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology (Reading). 2012;158(Pt 5):1147-1161.
10.1099/mic.0.058115-022422755Zhou D, Mooseker MS, Galan JE. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science. 1999;283(5410):2092-2095.
10.1126/science.283.5410.209210092234Eswarappa SM, Negi VD, Chakraborty S, Chandrasekhar Sagar BK, Chakravortty D. Division of the Salmonella-containing vacuole and depletion of acidic lysosomes in Salmonella-infected host cells are novel strategies of Salmonella enterica to avoid lysosomes. Infect Immun. 2010;78(1):68-79.
10.1128/IAI.00668-0919858305PMC2798212Cirillo DM, Valdivia RH, Monack DM, Falkow S. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol. 1998;30(1):175-188.
10.1046/j.1365-2958.1998.01048.x9786194Lee AK, Detweiler CS, Falkow S. OmpR regulates the two-component system SsrA-SsrB in Salmonella pathogenicity island 2. J Bacteriol. 2000;182(3):771-781.
10.1128/JB.182.3.771-781.200010633113PMC94342Waterman SR, Holden DW. Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol. 2003;5(8):501-511.
10.1046/j.1462-5822.2003.00294.x12864810Klingl S, Kordes S, Schmid B, Gerlach RG, Hensel M, Muller YA. Recombinant protein production and purification of SiiD, SiiE and SiiF - Components of the SPI4-encoded type I secretion system from Salmonella Typhimurium. Protein Expr Purif. 2020;172:105632.
10.1016/j.pep.2020.10563232251835Singh Y, Saxena A, Kumar R, Saxena MK. Virulence System of Salmonella with Special Reference to Salmonella enterica. In: Mascellino MT, editor. Salmonella - A Re-emerging Pathogen. IntechOpen; 2018.
10.5772/intechopen.77210Forest CG, Ferraro E, Sabbagh SC, Daigle F. Intracellular survival of Salmonella enterica serovar Typhi in human macrophages is independent of Salmonella pathogenicity island (SPI)-2. Microbiology (Reading). 2010;156(Pt 12):3689-3698.
10.1099/mic.0.041624-020817644Sabbagh SC, Lepage C, McClelland M, Daigle F. Selection of Salmonella enterica serovar Typhi genes involved during interaction with human macrophages by screening of a transposon mutant library. PLoS One. 2012;7(5):e36643.
10.1371/journal.pone.003664322574205PMC3344905Spano S, Galan JE. A Rab32-dependent pathway contributes to Salmonella typhi host restriction. Science. 2012;338(6109):960-963.
10.1126/science.122922423162001PMC3693731Fu Y, Galan JE. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature. 1999;401(6750):293-297.
10.1038/4582910499590Johnson R, Byrne A, Berger CN, Klemm E, Crepin VF, Dougan G, et al. The Type III Secretion System Effector SptP of Salmonella enterica Serovar Typhi. J Bacteriol. 2017;199(4): e00647-16.
10.1128/JB.00647-16Balasubramanian R, Im J, Lee JS, Jeon HJ, Mogeni OD, Kim JH, et al. The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Hum Vaccin Immunother. 2019;15(6):1421-1426.
10.1080/21645515.2018.150471730081708PMC6663144Allen JC, Toapanta FR, Baliban SM, Sztein MB, Tennant SM. Reduced immunogenicity of a live Salmonella enterica serovar Typhimurium vaccine in aged mice. Front Immunol. 2023;14:1190339.
10.3389/fimmu.2023.119033937207226PMC10188964Pui CF, Wong WC, Chai LC, Nillian E, Ghazali FM, Cheah YK, et al. Simultaneous detection of Salmonella spp., Salmonella Typhi and Salmonella Typhimurium in sliced fruits using multiplex PCR. Food Control. 2011;22(2):337-342.
10.1016/j.foodcont.2010.05.021Eng SK, Pusparajah P, Ab Mutalib NS, Ser HL, Chan KG, Lee LH. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci. 2015;8(3):284-293.
10.1080/21553769.2015.1051243Getto L, Zeserson E, Breyer M. Vomiting, diarrhea, constipation, and gastroenteritis. Emerg Med Clin North Am. 2011;29(2):211-237.
10.1016/j.emc.2011.01.00521515177PMC7132768Zaidi E, Bachur R, Harper M. Non-typhi Salmonella bacteremia in children. Pediatr Infect Dis J. 1999;18(12):1073-1077.
10.1097/00006454-199912000-0000910608627Galofre J, Moreno A, Mensa J, Miro JM, Gatell JM, Almela M, et al. Analysis of factors influencing the outcome and development of septic metastasis or relapse in Salmonella bacteremia. Clin Infect Dis. 1994;18(6):873-878.
10.1093/clinids/18.6.8738086546Jiang B, Xu H, Zhou Z. Septic arthritis with osteomyelitis due to Salmonella enterica serotype Dublin: A case series. Front Surg. 2023;9:1069141.
10.3389/fsurg.2022.106914136684367PMC9852604Meiring JE, Khanam F, Basnyat B, Charles RC, Crump JA, Debellut F, et al. Typhoid fever. Nat Rev Dis Primers. 2023;9(1):71.
10.1038/s41572-023-00480-z38097589Wang BX, Butler DS, Hamblin M, Monack DM. One species, different diseases: the unique molecular mechanisms that underlie the pathogenesis of typhoidal Salmonella infections. Curr Opin Microbiol. 2023;72:102262.
10.1016/j.mib.2022.10226236640585PMC10023398Neupane DP, Dulal HP, Song J. Enteric Fever Diagnosis: Current Challenges and Future Directions. Pathogens. 2021;10(4):410.
10.3390/pathogens1004041033915749PMC8065732Basnyat B, Maskey AP, Zimmerman MD, Murdoch DR. Enteric (typhoid) fever in travelers. Clin Infect Dis. 2005; 41(10):1467-1472.
10.1086/49713616231259Alvarez-Ordonez A, Begley M, Prieto M, Messens W, Lopez M, Bernardo A, et al. Salmonella spp. survival strategies within the host gastrointestinal tract. Microbiology (Reading). 2011;157(Pt 12):3268-3281.
10.1099/mic.0.050351-022016569Gonzalez-Escobedo G, Marshall JM, Gunn JS. Chronic and acute infection of the gall bladder by Salmonella Typhi: understanding the carrier state. Nat Rev Microbiol. 2011;9(1):9-14.
10.1038/nrmicro249021113180PMC3255095Liljebjelke KA, Hofacre CL, White DG, Ayers S, Lee MD, Maurer JJ. Diversity of Antimicrobial Resistance Phenotypes in Salmonella Isolated from Commercial Poultry Farms. Front Vet Sci. 2017;4:96.
10.3389/fvets.2017.0009628691011PMC5482141Elsayed MM, El-Basrey YFH, El-Baz AH, Dowidar HA, Shami A, Al-Saeed FA, et al. Ecological prevalence, genetic diversity, and multidrug resistance of Salmonella enteritidis recovered from broiler and layer chicken farms. Poult Sci. 2024;103(2):103320.
10.1016/j.psj.2023.10332038215504PMC10825688Srednik ME, Morningstar-Shaw BR, Hicks JA, Tong C, Mackie TA, Schlater LK. Whole-genome sequencing and phylogenetic analysis capture the emergence of a multi-drug resistant Salmonella enterica serovar Infantis clone from diagnostic animal samples in the United States. Front Microbiol. 2023;14:1166908.
10.3389/fmicb.2023.116690837333652PMC10272548U. S. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019. Available at https://www.cdc.gov/drugresistance/Biggest-Threats.html [accessed on 16 July 2024].
Dawan J, Ahn J. Assessment of cross-resistance potential to serial antibiotic treatments in antibiotic-resistant Salmonella Typhimurium. Microb Pathog. 2020;148:104478.
10.1016/j.micpath.2020.10447832916245Bhandari M, Poelstra JW, Kauffman M, Varghese B, Helmy YA, Scaria J, et al. Genomic Diversity, Antimicrobial Resistance, Plasmidome, and Virulence Profiles of Salmonella Isolated from Small Specialty Crop Farms Revealed by Whole-Genome Sequencing. Antibiotics (Basel). 2023;12(11):1637.
10.3390/antibiotics1211163737998839PMC10668983Vestergaard M, Paulander W, Marvig RL, Clasen J, Jochumsen N, Molin S, et al. Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa. Int J Antimicrob Agents. 2016;47(1):48-55.
10.1016/j.ijantimicag.2015.09.01426597931Good practices for biosecurity in the pig sector: Issues and options in developing and transition countries. Available at https://www.fao.org/4/i1435e/i1435e00.htm [accessed on 30 December 2010].
Galipo E, Zoche-Golob V, Sassu EL, Prigge C, Sjolund M, Tobias T, et al. Prioritization of pig farm biosecurity for control of Salmonella and hepatitis E virus infections: results of a European expert opinion elicitation. Porcine Health Manag. 2023;9(1):8.
10.1186/s40813-023-00306-036872376PMC9987137Sharma B. Poultry Production, Management and Bio-Security Measures. J Agric Environ. 2010;11:120-125.
10.3126/aej.v11i0.3659Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ 2nd, Lovestad CW, et al. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel). 2024;13(1):76.
10.3390/antibiotics1301007638247636PMC10812683Jensen AN, Dalsgaard A, Stockmarr A, Nielsen EM, Baggesen DL. Survival and transmission of Salmonella enterica serovar Typhimurium in an outdoor organic pig farming environment. Appl Environ Microbiol. 2006;72(3):1833-1842.
10.1128/AEM.72.3.1833-1842.200616517629PMC1393233Mannion C, Leonard FC, Lynch PB, Egan J. Efficacy of cleaning and disinfection on pig farms in Ireland. Vet Rec. 2007;161(11):371-375.
10.1136/vr.161.11.37117873266Trampel DW, Holder TG, Gast RK. Integrated farm management to prevent Salmonella Enteritidis contamination of eggs. J Appl Poult Res. 2014;23(2):353-365.
10.3382/japr.2014-00944Mee JF, Geraghty T, O'Neill R, More SJ. Bioexclusion of diseases from dairy and beef farms: risks of introducing infectious agents and risk reduction strategies. Vet J. 2012;194(2):143-150.
10.1016/j.tvjl.2012.07.00123103219PMC7110757Renault V, Damiaans B, Sarrazin S, Humblet MF, Dewulf J, Saegerman C. Biosecurity practices in Belgian cattle farming: Level of implementation, constraints and weaknesses. Transbound Emerg Dis. 2018;65(5):1246-1261.
10.1111/tbed.1286529566303Tilli G, Laconi A, Galuppo F, Mughini-Gras L, Piccirillo A. Assessing Biosecurity Compliance in Poultry Farms: A Survey in a Densely Populated Poultry Area in North East Italy. Animals (Basel). 2022;12(11):1409.
10.3390/ani1211140935681871PMC9179503Busani L, Dalla Pozza M, Bonfanti L, Toson M, Ferre N, Marangon S. Intervention strategies for low-pathogenic avian influenza control in Italy. Avian Dis. 2007;51(1 Suppl):470-473.
10.1637/7553-033106R.117494610Gelaude P, Schlepers M, Verlinden M, Laanen M, Dewulf J. Biocheck.UGent: a quantitative tool to measure biosecurity at broiler farms and the relationship with technical performances and antimicrobial use. Poult Sci. 2014;93(11):2740-2751.
10.3382/ps.2014-0400225193257Van Limbergen T, Dewulf J, Klinkenberg M, Ducatelle R, Gelaude P, Mendez J, et al. Scoring biosecurity in European conventional broiler production. Poult Sci. 2018;97(1):74-83.
10.3382/ps/pex29629077940Maunsell F, Donovan GA. Biosecurity and risk management for dairy replacements. Vet Clin North Am Food Anim Pract. 2008;24(1):155-190.
10.1016/j.cvfa.2007.10.00718299037PMC7134781Verwoerd DW. Definition of a vector and a vector-borne disease. Rev Sci Tech. 2015;34(1):29-39.
10.20506/rst.34.1.234326470447Axtell RC. Fly Management in Poultry Production: Cultural, Biological, and Chemical. Poult Sci. 1986;65(4):657-667.
10.3382/ps.0650657Balaraman V, Drolet BS, Mitzel DN, Wilson WC, Owens J, Gaudreault NN, et al. Mechanical transmission of SARS-CoV-2 by house flies. Parasit Vectors. 2021;14(1):214.
10.1186/s13071-021-04703-833879234PMC8056201Azizi-Lalabadi M, Rahimzadeh-Sani Z, Feng J, Hosseini H, Jafari SM. The impact of essential oils on the qualitative properties, release profile, and stimuli-responsiveness of active food packaging nanocomposites. Crit Rev Food Sci Nutr. 2023;63(13):1822-1845.
10.1080/10408398.2021.197115434486886Andres VM, Davies RH. Biosecurity Measures to Control Salmonella and Other Infectious Agents in Pig Farms: A Review. Compr Rev Food Sci Food Saf. 2015;14(4):317-335.
10.1111/1541-4337.12137Wierup M. The control of microbial diseases in animals: alternatives to the use of antibiotics. Int J Antimicrob Agents. 2000;14(4):315-319.
10.1016/S0924-8579(00)00143-610794953Patel TA, Armstrong M, Morris-Jones SD, Wright SG, Doherty T. Imported enteric fever: case series from the hospital for tropical diseases, London, United Kingdom. Am J Trop Med Hyg. 2010;82(6):1121-1126.
10.4269/ajtmh.2010.10-000720519611PMC2877422WHO. Interventions for the control of non-typhoidal Salmonella spp. in beef and pork: meeting report and systematic review. Geneva: World Health Organization; 2016.
Davies PR. Intensive swine production and pork safety. Foodborne Pathog Dis. 2011;8(2):189-201.
10.1089/fpd.2010.071721117987Wallace CA, Mortimore SE. Chapter 3 - HACCP. In: Lelieveld H, Holah J, Gabrić D, editors. Handbook of Hygiene Control in the Food Industry (Second Edition). San Diego: Woodhead Publishing; 2016. p.25-42.
10.1016/B978-0-08-100155-4.00003-027109640PMC4940221Sargeant JM, Totton SC, Plishka M, Vriezen ER. Salmonella in Animal Feeds: A Scoping Review. Front Vet Sci. 2021;8:727495.
10.3389/fvets.2021.72749534805332PMC8600132Lamas A, Miranda JM, Regal P, Vazquez B, Franco CM, Cepeda A. A comprehensive review of non-enterica subspecies of Salmonella enterica. Microbiol Res. 2018;206:60-73.
10.1016/j.micres.2017.09.01029146261Davies RH, Wales AD. Investigations into Salmonella contamination in poultry feedmills in the United Kingdom. J Appl Microbiol. 2010;109(4):1430-1440.
10.1111/j.1365-2672.2010.04767.x20553348Van Immerseel F, Russell JB, Flythe MD, Gantois I, Timbermont L, Pasmans F, et al. The use of organic acids to combat Salmonella in poultry: a mechanistic explanation of the efficacy. Avian Pathol. 2006;35(3):182-188.
10.1080/0307945060071104516753609Jones FT, Richardson KE. Salmonella in commercially manufactured feeds. Poult Sci. 2004;83(3):384-391.
10.1093/ps/83.3.38415049490Alem WT. Effect of herbal extracts in animal nutrition as feed additives. Heliyon. 2024;10(3):e24973.
10.1016/j.heliyon.2024.e2497338322944PMC10845724Windisch W, Schedle K, Plitzner C, Kroismayr A. Use of phytogenic products as feed additives for swine and poultry. J Anim Sci. 2008;86(14 Suppl):E140-8.
10.2527/jas.2007-045918073277Arya G, Holtslander R, Robertson J, Yoshida C, Harris J, Parmley J, et al. Epidemiology, Pathogenesis, Genoserotyping, Antimicrobial Resistance, and Prevention and Control of Non-Typhoidal Salmonella Serovars. Curr Clin Microbiol Rep. 2017;4(1):43-53.
10.1007/s40588-017-0057-7Herikstad H, Motarjemi Y, Tauxe RV. Salmonella surveillance: a global survey of public health serotyping. Epidemiol Infect. 2002;129(1):1-8.
10.1017/S095026880200684212211575PMC2869853Mkangara M. Prevention and Control of Human Salmonella enterica Infections: An Implication in Food Safety. Int J Food Sci. 2023;2023:8899596.
10.1155/2023/889959637727836PMC10506869Nsubuga P, White ME, Thacker SB, Anderson MA, Blount SB, Broome CV, et al. Public Health Surveillance: A Tool for Targeting and Monitoring Interventions. In: Jamison DT, Breman JG, Measham AR, Alleyne G, Claeson M, Evans DB, et al., editors. Disease Control Priorities in Developing Countries. 2nd ed. Washington (DC); 2006.
Radu E, Dima A, Dobrota EM, Badea AM, Madsen DO, Dobrin C, et al. Global trends and research hotspots on HACCP and modern quality management systems in the food industry. Heliyon. 2023;9(7):e18232.
10.1016/j.heliyon.2023.e1823237539220PMC10393635Hatfull GF, Hendrix RW. Bacteriophages and their genomes. Curr Opin Virol. 2011;1(4):298-303.
10.1016/j.coviro.2011.06.00922034588PMC3199584Rezaei AR. Bacteriophages for the treatment of resistant bacterial infection disease. J Bacteriol Virol. 2024;54(2):84-93.
10.4167/jbv.2024.54.2.084Zhou WY, Sun SF, Zhang YS, Hu Q, Zheng XF, Yang ZQ, et al. Isolation and Characterization of a Virulent Bacteriophage for Controlling Salmonella Enteritidis Growth in Ready-to-Eat Mixed-Ingredient Salads. J Food Prot. 2021;84(9):1629-1639.
10.4315/JFP-20-46033793776Kosznik-Kwasnicka K, Cieminska K, Grabski M, Grabowski L, Gorniak M, Jurczak-Kurek A, et al. Characteristics of a Series of Three Bacteriophages Infecting Salmonella enterica Strains. Int J Mol Sci. 2020;21(17):6152.
10.3390/ijms2117615232858954PMC7503781Meile S, Du J, Dunne M, Kilcher S, Loessner MJ. Engineering therapeutic phages for enhanced antibacterial efficacy. Curr Opin Virol. 2022;52:182-191.
10.1016/j.coviro.2021.12.00334952266Lenneman BR, Fernbach J, Loessner MJ, Lu TK, Kilcher S. Enhancing phage therapy through synthetic biology and genome engineering. Curr Opin Biotechnol. 2021;68:151-159.
10.1016/j.copbio.2020.11.00333310655Moye ZD, Woolston J, Sulakvelidze A. Bacteriophage Applications for Food Production and Processing. Viruses. 2018;10(4):205.
10.3390/v1004020529671810PMC5923499Khan MAS, Rahman SR. Use of Phages to Treat Antimicrobial-Resistant Salmonella Infections in Poultry. Vet Sci. 2022;9(8):438.
10.3390/vetsci908043836006353PMC9416511Sadekuzzaman M, Mizan MFR, Yang S, Kim HS, Ha SD. Application of bacteriophages for the inactivation of Salmonella spp. in biofilms. Food Sci Technol Int. 2018;24(5):424-433.
10.1177/108201321876342429546997Sabour PM, Griffiths MW. Bacteriophages in the Control of Food- and Waterborne Pathogens. ASM Press; 2010.
10.1128/9781555816629Leverentz B, Conway WS, Janisiewicz W, Camp MJ. Optimizing concentration and timing of a phage spray application to reduce Listeria monocytogenes on honeydew melon tissue. J Food Prot. 2004;67(8):1682-1686.
10.4315/0362-028X-67.8.168215330534Hosny RA, Shalaby AG, Nasef SA, Sorour HK. Antibiofilm activity of a lytic Salmonella phage on different Salmonella enterica serovars isolated from broiler farms. Int Microbiol. 2023;26(2):205-217.
10.1007/s10123-022-00294-136334144PMC10148789Allen HK, Levine UY, Looft T, Bandrick M, Casey TA. Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends Microbiol. 2013;21(3):114-119.
10.1016/j.tim.2012.11.00123473629Elaish M, Ngunjiri JM, Ali A, Xia M, Ibrahim M, Jang H, et al. Supplementation of inactivated influenza vaccine with norovirus P particle-M2e chimeric vaccine enhances protection against heterologous virus challenge in chickens. PLoS One. 2017;12(2):e0171174.
10.1371/journal.pone.017117428151964PMC5289506Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA. The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control. J Clin Med. 2020;9(4):1225.
10.3390/jcm904122532344679PMC7230578Plotkin SA. Updates on immunologic correlates of vaccine-induced protection. Vaccine. 2020;38(9):2250-2257.
10.1016/j.vaccine.2019.10.04631767462MacLennan CA, Martin LB, Micoli F. Vaccines against invasive Salmonella disease: current status and future directions. Hum Vaccin Immunother. 2014;10(6):1478-1493.
10.4161/hv.2905424804797PMC4185946Levine MM, Ferreccio C, Black RE, Lagos R, San Martin O, Blackwelder WC. Ty21a live oral typhoid vaccine and prevention of paratyphoid fever caused by Salmonella enterica Serovar Paratyphi B. Clin Infect Dis. 2007;45(Suppl 1):S24-8.
10.1086/51814117582564Lindow JC, Fimlaid KA, Bunn JY, Kirkpatrick BD. Antibodies in action: role of human opsonins in killing Salmonella enterica serovar Typhi. Infect Immun. 2011;79(8):3188-3194.
10.1128/IAI.05081-1121628517PMC3147595Wahid R, Simon R, Zafar SJ, Levine MM, Sztein MB. Live oral typhoid vaccine Ty21a induces cross-reactive humoral immune responses against Salmonella enterica serovar Paratyphi A and S. Paratyphi B in humans. Clin Vaccine Immunol. 2012;19(6):825-834.
10.1128/CVI.00058-1222492745PMC3370435Chinnasami B, Sadasivam K, Vivekanandhan A, Arunachalam P, Pasupathy S. A Study on Longevity of Immune Response after Vaccination with Salmonella Typhi Vi Conjugate Vaccine (Pedatyph) in Children. J Clin Diagn Res. 2015;9(5):SC01-3.
10.7860/JCDR/2015/13302.590326155525PMC4484117Crump JA, Oo WT. Salmonella Typhi Vi polysaccharide conjugate vaccine protects infants and children against typhoid fever. Lancet. 2021;398(10301):643-644.
10.1016/S0140-6736(21)01340-434384541Jossi SE, Arcuri M, Alshayea A, Persaud RR, Marcial-Juarez E, Palmieri E, et al. Vi polysaccharide and conjugated vaccines afford similar early, IgM or IgG-independent control of infection but boosting with conjugated Vi vaccines sustains the efficacy of immune responses. Front Immunol. 2023;14:1139329.
10.3389/fimmu.2023.113932937033932PMC10076549Micoli F, Rondini S, Pisoni I, Giannelli C, Di Cioccio V, Costantino P, et al. Production of a conjugate vaccine for Salmonella enterica serovar Typhi from Citrobacter Vi. Vaccine. 2012;30(5):853-861.
10.1016/j.vaccine.2011.11.10822172503Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21(2):83-100.
10.1038/s41577-020-00479-733353987PMC7754704Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem. 2013;8(3):360-376.
10.1002/cmdc.20120048723316023Tekle YI, Nielsen KM, Liu J, Pettigrew MM, Meyers LA, Galvani AP, et al. Controlling antimicrobial resistance through targeted, vaccine-induced replacement of strains. PLoS One. 2012;7(12):e50688.
10.1371/journal.pone.005068823227198PMC3515573Cunningham M, Azcarate-Peril MA, Barnard A, Benoit V, Grimaldi R, Guyonnet D, et al. Shaping the Future of Probiotics and Prebiotics. Trends Microbiol. 2021;29(8):667-685.
10.1016/j.tim.2021.01.00333551269Fric PP. Probiotics and prebiotics - renaissance of a therapeutic principle. Cent Eur J Med. 2007;2(3):237-270.
10.2478/s11536-007-0031-5Ranjha MMAN, Shafique B, Batool M, Kowalczewski PŁ, Shehzad Q, Usman M, et al. Nutritional and Health Potential of Probiotics: A Review. Appl Sci. 2021;11(23):11204.
10.3390/app112311204Nakazato G, Paganelli FL, Lago JC, Aoki FH, Mobilon C, Brocchi M, et al. Lactobacillus acidophilus decreases Salmonella Typhimurium invasion in vivo. J Food Saf. 2011;31(2):284-289.
10.1111/j.1745-4565.2011.00299.xHutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G Jr, Goh YJ, et al. Prebiotics: why definitions matter. Curr Opin Biotechnol. 2016;37:1-7.
10.1016/j.copbio.2015.09.00126431716PMC4744122Rashidinejad A, Bahrami A, Rehman A, Rezaei A, Babazadeh A, Singh H, et al. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Crit Rev Food Sci Nutr. 2022;62(9): 2470-2494.
10.1080/10408398.2020.185416933251846Tran THT, Everaert N, Bindelle J. Review on the effects of potential prebiotics on controlling intestinal enteropathogens Salmonella and Escherichia coli in pig production. J Anim Physiol Anim Nutr (Berl). 2018;102(1):17-32.
10.1111/jpn.1266628028851Guarino MPL, Altomare A, Emerenziani S, Di Rosa C, Ribolsi M, Balestrieri P, et al. Mechanisms of Action of Prebiotics and Their Effects on Gastro-Intestinal Disorders in Adults. Nutrients. 2020;12(4):1037.
10.3390/nu1204103732283802PMC7231265Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44(D1):D1087-93.
10.1093/nar/gkv127826602694PMC4702905Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol. 2020;11:582779.
10.3389/fmicb.2020.58277933178164PMC7596191Ryu M, Park J, Yeom JH, Joo M, Lee K. Rediscovery of antimicrobial peptides as therapeutic agents. J Microbiol. 2021;59(2):113-123.
10.1007/s12275-021-0649-z33527313Almarwani B, Phambu N, Hamada YZ, Sunda-Meya A. Interactions of an Anionic Antimicrobial Peptide with Zinc(II): Application to Bacterial Mimetic Membranes. Langmuir. 2020;36(48):14554-14562.
10.1021/acs.langmuir.0c0230633227202Festa R, Ambrosio RL, Lamas A, Gratino L, Palmieri G, Franco CM, et al. A Study on the Antimicrobial and Antibiofilm Peptide 1018-K6 as Potential Alternative to Antibiotics against Food-Pathogen Salmonella enterica. Foods. 2021;10(6):1372.
10.3390/foods1006137234198540PMC8232012Sengkhui S, Klubthawee N, Aunpad R. A novel designed membrane-active peptide for the control of foodborne Salmonella enterica serovar Typhimurium. Sci Rep. 2023;13(1):3507.
10.1038/s41598-023-30427-z36864083PMC9981719Mangmee S, Reamtong O, Kalambaheti T, Roytrakul S, Sonthayanon P. Antimicrobial Peptide Modifications against Clinically Isolated Antibiotic-Resistant Salmonella. Molecules. 2021;26(15):4654.
10.3390/molecules2615465434361810PMC8348142Klubthawee N, Aunpad R. A Thermostable, Modified Cathelicidin-Derived Peptide With Enhanced Membrane-Active Activity Against Salmonella enterica serovar Typhimurium. Front Microbiol. 2021;11:592220.
10.3389/fmicb.2020.59222033519729PMC7838546Forkus B, Ritter S, Vlysidis M, Geldart K, Kaznessis YN. Antimicrobial Probiotics Reduce Salmonella enterica in Turkey Gastrointestinal Tracts. Sci Rep. 2017;7:40695.
10.1038/srep4069528094807PMC5240571Xu Y, Wang Q, Dong M, Song H, Hang B, Sun Y, et al. Evaluation of the efficacy of the antimicrobial peptide HJH-3 in chickens infected with Salmonella Pullorum. Front Microbiol. 2023;14:1102789.
10.3389/fmicb.2023.110278936760504PMC9904387Yeom JH, Lee B, Kim D, Lee JK, Kim S, Bae J, et al. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials. 2016;104:43-51.
10.1016/j.biomaterials.2016.07.00927424215Kumaresan V, Bhatt P, Ganesh MR, Harikrishnan R, Arasu M, Al-Dhabi NA, et al. A novel antimicrobial peptide derived from fish goose type lysozyme disrupts the membrane of Salmonella enterica. Mol Immunol. 2015;68(2 Pt B):421-433.
10.1016/j.molimm.2015.10.00126477736Tuxpan-Perez A, Ibarra-Valencia MA, Estrada BE, Clement H, Corrales-Garcia LL, Espino-Solis GP, et al. Antimicrobial and Immunomodulatory Effects of Selected Chemokine and Antimicrobial Peptide on Cytokine Profile during Salmonella Typhimurium Infection in Mouse. Antibiotics (Basel). 2022;11(5):607.
10.3390/antibiotics1105060735625251PMC9137564Roque-Borda CA, Pereira LP, Guastalli EAL, Soares NM, Mac-Lean PAB, Salgado DD, et al. HPMCP-Coated Microcapsules Containing the Ctx(Ile21)-Ha Antimicrobial Peptide Reduce the Mortality Rate Caused by Resistant Salmonella Enteritidis in Laying Hens. Antibiotics (Basel). 2021;10(6):616.
10.3390/antibiotics1006061634064051PMC8224044Bailleul G, Guabiraba R, Virlogeux-Payant I, Lantier I, Trotereau J, Gilbert FB, et al. Systemic Administration of Avian Defensin 7: Distribution, Cellular Target, and Antibacterial Potential in Mice. Front Microbiol. 2019;10:541.
10.3389/fmicb.2019.0054130972041PMC6444188Maiti S, Patro S, Purohit S, Jain S, Senapati S, Dey N. Effective control of Salmonella infections by employing combinations of recombinant antimicrobial human beta-defensins hBD-1 and hBD-2. Antimicrob Agents Chemother. 2014;58(11):6896-6903.
10.1128/AAC.03628-1425199778PMC4249419Milona P, Townes CL, Bevan RM, Hall J. The chicken host peptides, gallinacins 4, 7, and 9 have antimicrobial activity against Salmonella serovars. Biochem Biophys Res Commun. 2007;356(1):169-174.
10.1016/j.bbrc.2007.02.09817346671Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101-124.
10.1038/s41573-020-0090-833277608PMC7717100Acevedo-Villanueva KY, Akerele GO, Al Hakeem WG, Renu S, Shanmugasundaram R, Selvaraj RK. A Novel Approach against Salmonella: A Review of Polymeric Nanoparticle Vaccines for Broilers and Layers. Vaccines (Basel). 2021;9(9):1041.
10.3390/vaccines909104134579278PMC8470574Acevedo-Villanueva KY, Renu S, Shanmugasundaram R, Akerele GO, Gourapura RJ, Selvaraj RK. Salmonella chitosan nanoparticle vaccine administration is protective against Salmonella Enteritidis in broiler birds. PLoS One. 2021;16(11):e0259334.
10.1371/journal.pone.025933434784366PMC8594846Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv. 2015;12(9):1459-1473.
10.1517/17425247.2015.101817525813361PMC4835173Lee B, Park J, Ryu M, Kim S, Joo M, Yeom JH, et al. Antimicrobial peptide-loaded gold nanoparticle-DNA aptamer conjugates as highly effective antibacterial therapeutics against Vibrio vulnificus. Sci Rep. 2017;7(1):13572.
10.1038/s41598-017-14127-z29051620PMC5648795Park J, Shin E, Yeom JH, Choi Y, Joo M, Lee M, et al. Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice. J Microbiol. 2022;60(1):128-136.
10.1007/s12275-022-1620-334964948Ryou SM, Kim JM, Yeom JH, Hyun S, Kim S, Han MS, et al. Gold nanoparticle-assisted delivery of small, highly structured RNA into the nuclei of human cells. Biochem Biophys Res Commun. 2011;416(1-2):178-183.
10.1016/j.bbrc.2011.11.02022093830Ryou SM, Kim S, Jang HH, Kim JH, Yeom JH, Eom MS, et al. Delivery of shRNA using gold nanoparticle-DNA oligonucleotide conjugates as a universal carrier. Biochem Biophys Res Commun. 2010;398(3):542-546.
10.1016/j.bbrc.2010.06.11520599759Ryou SM, Yeom JH, Kang HJ, Won M, Kim JS, Lee B, et al. Gold nanoparticle-DNA aptamer composites as a universal carrier for in vivo delivery of biologically functional proteins. J Control Release. 2014;196:287-294.
10.1016/j.jconrel.2014.10.02125450403Yeom JH, Ryou SM, Won M, Park M, Bae J, Lee K. Inhibition of Xenograft tumor growth by gold nanoparticle-DNA oligonucleotide conjugates-assisted delivery of BAX mRNA. PLoS One. 2013;8(9):e75369.
10.1371/journal.pone.007536924073264PMC3779183Yang W, Liang H, Ma S, Wang D, Huang J. Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment. Sustain Mater Technol. 2019;22:e00109.
10.1016/j.susmat.2019.e00109Wang J, Potocny AM, Rosenthal J, Day ES. Gold Nanoshell-Linear Tetrapyrrole Conjugates for Near Infrared-Activated Dual Photodynamic and Photothermal Therapies. ACS Omega. 2020;5(1):926-940.
10.1021/acsomega.9b0415031956847PMC6964518Wang D, Markus J, Wang C, Kim YJ, Mathiyalagan R, Aceituno VC, et al. Green synthesis of gold and silver nanoparticles using aqueous extract of Cibotium barometz root. Artif Cells Nanomed Biotechnol. 2017;45(8):1548-1555.
10.1080/21691401.2016.126058027917689Allafchian A, Vahabi MR, Jalali SAH, Mahdavi SS, Sepahvand S, Farhang HR. Design of green silver nanoparticles mediated by Ferula ovina Boiss. Extract with enhanced antibacterial effect. Chem Phys Lett. 2022;791:139392.
10.1016/j.cplett.2022.139392Desin TS, Koster W, Potter AA. Salmonella vaccines in poultry: past, present and future. Expert Rev Vaccines. 2013;12(1):87-96.
10.1586/erv.12.13823256741Singh A, Gautam PK, Verma A, Singh V, Shivapriya PM, Shivalkar S, et al. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol Rep (Amst). 2020;25:e00427.
10.1016/j.btre.2020.e0042732055457PMC7005563Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug- resistant bacteria. J Appl Microbiol. 2012;112(5):841-852.
10.1111/j.1365-2672.2012.05253.x22324439Arshad R, Tabish TA, Naseem AA, Hassan MRu, Hussain I, Hussain SS, et al. Development of poly-L-lysine multi-functionalized muco-penetrating self- emulsifying drug delivery system (SEDDS) for improved solubilization and targeted delivery of ciprofloxacin against intracellular Salmonella Typhi. J Mol Liq. 2021;333:115972.
10.1016/j.molliq.2021.115972Atterbury RJ, Van Bergen MA, Ortiz F, Lovell MA, Harris JA, De Boer A, et al. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl Environ Microbiol. 2007;73(14):4543-4549.
10.1128/AEM.00049-0717526794PMC1932804Bardina C, Spricigo DA, Cortes P, Llagostera M. Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry. Appl Environ Microbiol. 2012;78(18):6600-6607.
10.1128/AEM.01257-1222773654PMC3426709Fiorentin L, Vieira ND, Barioni W Jr. Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathol. 2005;34(3):258-263.
10.1080/0144534050011215716191711Donoghue AM, Bielke LR, Higgins SE, Donoghue DJ, Hargis BM, Tellez G. Use of Wide-Host-Range Bacteriophages to Reduce Salmonella on Poultry Products. Int J Poult Sci. 2007;6:754-757.
10.3923/ijps.2007.754.757Nabil NM, Tawakol MM, Hassan HM. Assessing the impact of bacteriophages in the treatment of Salmonella in broiler chickens. Infect Ecol Epidemiol. 2018;8(1):1539056.
10.1080/20008686.2018.153905630397428PMC6211228Higgins SE, Higgins JP, Bielke LR, Hargis BM. Selection and application of bacteriophages for treating Salmonella Enteritidis infections in poultry. Int J Poult Sci. 2007;6:163-168.
10.3923/ijps.2007.163.168Lim TH, Kim MS, Lee DH, Lee YN, Park JK, Youn HN, et al. Use of bacteriophage for biological control of Salmonella Enteritidis infection in chicken. Res Vet Sci. 2012;93(3):1173-1178.
10.1016/j.rvsc.2012.06.00422795674Borie C, Sanchez ML, Navarro C, Ramirez S, Morales MA, Retamales J, et al. Aerosol spray treatment with bacteriophages and competitive exclusion reduces Salmonella Enteritidis infection in chickens. Avian Dis. 2009;53(2):250-254.
10.1637/8406-071008-Reg.119630232Lim TH, Lee DH, Lee YN, Park JK, Youn HN, Kim MS, et al. Efficacy of bacteriophage therapy on horizontal transmission of Salmonella Gallinarum on commercial layer chickens. Avian Dis. 2011;55(3):435-438.
10.1637/9599-111210-Reg.122017042Kimminau EA, Russo KN, Karnezos TP, Oh HG, Lee JJ, Tate CC, et al. Bacteriophage in-feed application: A novel approach to preventing Salmonella Enteritidis colonization in chicks fed experimentally contaminated feed. J Appl Poult Res. 2020;29(4):930-936.
10.1016/j.japr.2020.09.003Sklar IB, Joerger RD. Attempts to utilize bacteriophage to combat Salmonella enterica serovar Entemtidis infection in chickens. J Food Saf. 2001;21(1):15-29.
10.1111/j.1745-4565.2001.tb00305.xBorie C, Albala I, Sanchez P, Sanchez ML, Ramirez S, Navarro C, et al. Bacteriophage treatment reduces Salmonella colonization of infected chickens. Avian Dis. 2008;52(1):64-67.
10.1637/8091-082007-Reg18459298Wong CL, Sieo CC, Tan WS, Abdullah N, Hair-Bejo M, Abu J, et al. Evaluation of a lytic bacteriophage, Φ st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens. Int J Food Microbiol. 2014;172:92-101.
10.1016/j.ijfoodmicro.2013.11.03424361838Sonalika J, Srujana AS, Akhila DS, Juliet MR, Santhosh KS. Application of bacteriophages to control Salmonella Enteritidis in raw eggs. Iran J Vet Res. 2020;21(3):221-225.
Zhang Y, Ding Y, Li W, Zhu W, Wang J, Wang X. Application of a Novel Lytic Podoviridae Phage Pu20 for Biological Control of Drug-Resistant Salmonella in Liquid Eggs. Pathogens. 2021;10(1):34.
10.3390/pathogens1001003433406779PMC7823707Yi Y, Abdelhamid AG, Xu Y, Yousef AE. Characterization of broad-host lytic Salmonella phages isolated from livestock farms and application against Salmonella Enteritidis in liquid whole egg. LWT. 2021;144:111269.
10.1016/j.lwt.2021.111269Spricigo DA, Bardina C, Cortes P, Llagostera M. Use of a bacteriophage cocktail to control Salmonella in food and the food industry. Int J Food Microbiol. 2013;165(2):169-174.
10.1016/j.ijfoodmicro.2013.05.00923735218Duc HM, Son HM, Honjoh KI, Miyamoto T. Isolation and application of bacteriophages to reduce Salmonella contamination in raw chicken meat. LWT. 2018;91:353-360.
10.1016/j.lwt.2018.01.072Bao H, Zhang P, Zhang H, Zhou Y, Zhang L, Wang R. Bio-Control of Salmonella Enteritidis in Foods Using Bacteriophages. Viruses. 2015;7(8):4836-4853.
10.3390/v708284726305252PMC4576208Esmael A, Azab E, Gobouri AA, Nasr-Eldin MA, Moustafa MMA, Mohamed SA, et al. Isolation and characterization of two lytic bacteriophages infecting a multi-drug resistant Salmonella Typhimurium and their efficacy to combat salmonellosis in ready-to-use foods. Microorganisms. 2021;9(2):423.
10.3390/microorganisms902042333670722PMC7922427Kim JH, Kim HJ, Jung SJ, Mizan MFR, Park SH, Ha SD. Characterization of Salmonella spp.‐specific bacteriophages and their biocontrol application in chicken breast meat. J Food Sci. 2020;85(3):526-534.
10.1111/1750-3841.1504232043599Sukumaran AT, Nannapaneni R, Kiess A, Sharma CS. Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials. Int J Food Microbiol. 2015;207:8-15.
10.1016/j.ijfoodmicro.2015.04.02525950852Atterbury RJ, Gigante AM, Rubio Lozano MS, Mendez Medina RD, Robinson G, Alloush H, et al. Reduction of Salmonella contamination on the surface of chicken skin using bacteriophage. Virol J. 2020;17(1):98.
10.1186/s12985-020-01368-032646515PMC7346387Shakeri G, Hammerl JA, Jamshidi A, Ghazvini K, Rohde M, Szabo I, et al. The Lytic Siphophage vB_StyS-LmqsSP1 Reduces the Number of Salmonella enterica Serovar Typhimurium Isolates on Chicken Skin. Appl Environ Microbiol. 2021;87(24):e0142421.
10.1128/AEM.01424-2134586906PMC8612259Demirarslan ÖA, Alasalvar H, Yildirim Z. Biocontrol of Salmonella Enteritidis on chicken meat and skin using lytic SE-P3, P16, P37, and P47 bacteriophages. LWT. 2021;137:110469.
10.1016/j.lwt.2020.110469Aguilera M, Martinez S, Tello M, Gallardo MJ, Garcia V. Use of Cocktail of Bacteriophage for Salmonella Typhimurium Control in Chicken Meat. Foods. 2022;11(8):1164.
10.3390/foods1108116435454751PMC9029022Kumar A, Malik H, Dubal ZB, Jaiswal RK, Kumar S, Kumar B, et al. Isolation and characterization of Salmonella phages and phage cocktail mediated biocontrol of Salmonella enterica serovar Typhimurium in chicken meat. LWT. 2022;155:112957.
10.1016/j.lwt.2021.112957Rivera D, Moreno-Switt AI, Denes TG, Hudson LK, Peters TL, Samir R, et al. Novel Salmonella Phage, vB_Sen_STGO-35-1, Characterization and Evaluation in Chicken Meat. Microorganisms. 2022;10(3):606.
10.3390/microorganisms1003060635336181PMC8954984Whichard JM, Sriranganathan N, Pierson FW. Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. J Food Prot. 2003;66(2):220-225.
10.4315/0362-028X-66.2.22012597480Wang C, Chen Q, Zhang C, Yang J, Lu Z, Lu F, et al. Characterization of a broad host-spectrum virulent Salmonella bacteriophage fmb-p1 and its application on duck meat. Virus Res. 2017;236:14-23.
10.1016/j.virusres.2017.05.00128478136Smith GW, Smith F, Zuidhof S, Foster DM. Short communication: Characterization of the serologic response induced by vaccination of late-gestation cows with a Salmonella Dublin vaccine. J Dairy Sci. 2015;98(4):2529-2532.
10.3168/jds.2014-897225648810PMC7094398Lyon CE, Sadigh KS, Carmolli MP, Harro C, Sheldon E, Lindow JC, et al. In a randomized, double-blinded, placebo-controlled trial, the single oral dose typhoid vaccine, M01ZH09, is safe and immunogenic at doses up to 1.7 x 1010 colony-forming units. Vaccine. 2010;28(20):3602-3608.
10.1016/j.vaccine.2010.02.01720188175Giannelli C, Cappelletti E, Di Benedetto R, Pippi F, Arcuri M, Di Cioccio V, et al. Determination of free polysaccharide in Vi glycoconjugate vaccine against typhoid fever. J Pharm Biomed Anal. 2017;139:143-147.
10.1016/j.jpba.2017.02.04228282600Mancini F, Micoli F, Necchi F, Pizza M, Berlanda Scorza F, Rossi O. GMMA-Based Vaccines: The Known and The Unknown. Front Immunol. 2021;12:715393.
10.3389/fimmu.2021.71539334413858PMC8368434Huberman YD, Velilla AV, Terzolo HR. Evaluation of different live Salmonella Enteritidis vaccine schedules administered during layer hen rearing to reduce excretion, organ colonization, and egg contamination. Poult Sci. 2019;98(6):2422-2431.
10.3382/ps/pez00330690627Renu S, Han Y, Dhakal S, Lakshmanappa YS, Ghimire S, Feliciano-Ruiz N, et al. Chitosan-adjuvanted Salmonella subunit nanoparticle vaccine for poultry delivered through drinking water and feed. Carbohydr Polym. 2020;243:116434.
10.1016/j.carbpol.2020.11643432532387- Publisher :The Korean Society for Microbiology and The Korean Society of Virology
- Publisher(Ko) :대한미생물학회‧대한바이러스학회
- Journal Title :JOURNAL OF BACTERIOLOGY AND VIROLOGY
- Volume : 54
- No :4
- Pages :247-272
- Received Date : 2024-09-25
- Revised Date : 2024-10-15
- Accepted Date : 2024-11-10
- DOI :https://doi.org/10.4167/jbv.2024.54.4.247